WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) SlicingProof [LOWER BOUND(ID), 0 ms] (4) CpxTRS (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) typed CpxTrs (7) OrderProof [LOWER BOUND(ID), 0 ms] (8) typed CpxTrs (9) RewriteLemmaProof [LOWER BOUND(ID), 356 ms] (10) BEST (11) proven lower bound (12) LowerBoundPropagationProof [FINISHED, 0 ms] (13) BOUNDS(n^1, INF) (14) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(a, b, c), C) -> triple(a, b, cons(C, c)) f'(triple(a, b, c), B) -> f(triple(a, b, c), A) f'(triple(a, b, c), A) -> f''(foldf(triple(cons(A, a), nil, c), b)) f''(triple(a, b, c)) -> foldf(triple(a, b, nil), c) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: triple/0 ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, cons(C, c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldf(triple(nil, c), b)) f''(triple(b, c)) -> foldf(triple(b, nil), c) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Innermost TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, cons(C, c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldf(triple(nil, c), b)) f''(triple(b, c)) -> foldf(triple(b, nil), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldf :: triple -> nil:cons -> triple nil :: nil:cons cons :: A:B:C -> nil:cons -> nil:cons f :: triple -> A:B:C -> triple f' :: triple -> A:B:C -> triple triple :: nil:cons -> nil:cons -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_nil:cons3_0 :: nil:cons gen_nil:cons4_0 :: Nat -> nil:cons ---------------------------------------- (7) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: foldf, f, f', f'' They will be analysed ascendingly in the following order: foldf = f foldf = f' foldf = f'' f = f' f = f'' f' = f'' ---------------------------------------- (8) Obligation: Innermost TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, cons(C, c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldf(triple(nil, c), b)) f''(triple(b, c)) -> foldf(triple(b, nil), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldf :: triple -> nil:cons -> triple nil :: nil:cons cons :: A:B:C -> nil:cons -> nil:cons f :: triple -> A:B:C -> triple f' :: triple -> A:B:C -> triple triple :: nil:cons -> nil:cons -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_nil:cons3_0 :: nil:cons gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(A, gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: f, foldf, f', f'' They will be analysed ascendingly in the following order: foldf = f foldf = f' foldf = f'' f = f' f = f'' f' = f'' ---------------------------------------- (9) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: foldf(triple(nil, nil), gen_nil:cons4_0(n153_0)) -> triple(gen_nil:cons4_0(0), gen_nil:cons4_0(0)), rt in Omega(1 + n153_0) Induction Base: foldf(triple(nil, nil), gen_nil:cons4_0(0)) ->_R^Omega(1) triple(nil, nil) Induction Step: foldf(triple(nil, nil), gen_nil:cons4_0(+(n153_0, 1))) ->_R^Omega(1) f(foldf(triple(nil, nil), gen_nil:cons4_0(n153_0)), A) ->_IH f(triple(gen_nil:cons4_0(0), gen_nil:cons4_0(0)), A) ->_R^Omega(1) f'(triple(gen_nil:cons4_0(0), gen_nil:cons4_0(0)), g(A)) ->_R^Omega(1) f'(triple(gen_nil:cons4_0(0), gen_nil:cons4_0(0)), A) ->_R^Omega(1) f''(foldf(triple(nil, gen_nil:cons4_0(0)), gen_nil:cons4_0(0))) ->_R^Omega(1) f''(triple(nil, gen_nil:cons4_0(0))) ->_R^Omega(1) foldf(triple(nil, nil), gen_nil:cons4_0(0)) ->_R^Omega(1) triple(nil, nil) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (10) Complex Obligation (BEST) ---------------------------------------- (11) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, cons(C, c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldf(triple(nil, c), b)) f''(triple(b, c)) -> foldf(triple(b, nil), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldf :: triple -> nil:cons -> triple nil :: nil:cons cons :: A:B:C -> nil:cons -> nil:cons f :: triple -> A:B:C -> triple f' :: triple -> A:B:C -> triple triple :: nil:cons -> nil:cons -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_nil:cons3_0 :: nil:cons gen_nil:cons4_0 :: Nat -> nil:cons Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(A, gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: foldf They will be analysed ascendingly in the following order: foldf = f foldf = f' foldf = f'' f = f' f = f'' f' = f'' ---------------------------------------- (12) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (13) BOUNDS(n^1, INF) ---------------------------------------- (14) Obligation: Innermost TRS: Rules: g(A) -> A g(B) -> A g(B) -> B g(C) -> A g(C) -> B g(C) -> C foldf(x, nil) -> x foldf(x, cons(y, z)) -> f(foldf(x, z), y) f(t, x) -> f'(t, g(x)) f'(triple(b, c), C) -> triple(b, cons(C, c)) f'(triple(b, c), B) -> f(triple(b, c), A) f'(triple(b, c), A) -> f''(foldf(triple(nil, c), b)) f''(triple(b, c)) -> foldf(triple(b, nil), c) Types: g :: A:B:C -> A:B:C A :: A:B:C B :: A:B:C C :: A:B:C foldf :: triple -> nil:cons -> triple nil :: nil:cons cons :: A:B:C -> nil:cons -> nil:cons f :: triple -> A:B:C -> triple f' :: triple -> A:B:C -> triple triple :: nil:cons -> nil:cons -> triple f'' :: triple -> triple hole_A:B:C1_0 :: A:B:C hole_triple2_0 :: triple hole_nil:cons3_0 :: nil:cons gen_nil:cons4_0 :: Nat -> nil:cons Lemmas: foldf(triple(nil, nil), gen_nil:cons4_0(n153_0)) -> triple(gen_nil:cons4_0(0), gen_nil:cons4_0(0)), rt in Omega(1 + n153_0) Generator Equations: gen_nil:cons4_0(0) <=> nil gen_nil:cons4_0(+(x, 1)) <=> cons(A, gen_nil:cons4_0(x)) The following defined symbols remain to be analysed: f, f', f'' They will be analysed ascendingly in the following order: foldf = f foldf = f' foldf = f'' f = f' f = f'' f' = f''