WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 73 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus_active(0, y) -> 0 mark(0) -> 0 minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0) -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0, s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0, s(y)) -> 0 mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0) if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Types: minus_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if 0' :: 0':s:true:minus:false:ge:div:if mark :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if s :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if ge_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if true :: 0':s:true:minus:false:ge:div:if minus :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if false :: 0':s:true:minus:false:ge:div:if ge :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if gen_0':s:true:minus:false:ge:div:if2_0 :: Nat -> 0':s:true:minus:false:ge:div:if ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus_active, mark, ge_active They will be analysed ascendingly in the following order: minus_active < mark ge_active < mark ---------------------------------------- (6) Obligation: Innermost TRS: Rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Types: minus_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if 0' :: 0':s:true:minus:false:ge:div:if mark :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if s :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if ge_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if true :: 0':s:true:minus:false:ge:div:if minus :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if false :: 0':s:true:minus:false:ge:div:if ge :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if gen_0':s:true:minus:false:ge:div:if2_0 :: Nat -> 0':s:true:minus:false:ge:div:if Generator Equations: gen_0':s:true:minus:false:ge:div:if2_0(0) <=> 0' gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) <=> s(gen_0':s:true:minus:false:ge:div:if2_0(x)) The following defined symbols remain to be analysed: minus_active, mark, ge_active They will be analysed ascendingly in the following order: minus_active < mark ge_active < mark ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) -> gen_0':s:true:minus:false:ge:div:if2_0(0), rt in Omega(1 + n4_0) Induction Base: minus_active(gen_0':s:true:minus:false:ge:div:if2_0(0), gen_0':s:true:minus:false:ge:div:if2_0(0)) ->_R^Omega(1) 0' Induction Step: minus_active(gen_0':s:true:minus:false:ge:div:if2_0(+(n4_0, 1)), gen_0':s:true:minus:false:ge:div:if2_0(+(n4_0, 1))) ->_R^Omega(1) minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) ->_IH gen_0':s:true:minus:false:ge:div:if2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Types: minus_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if 0' :: 0':s:true:minus:false:ge:div:if mark :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if s :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if ge_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if true :: 0':s:true:minus:false:ge:div:if minus :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if false :: 0':s:true:minus:false:ge:div:if ge :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if gen_0':s:true:minus:false:ge:div:if2_0 :: Nat -> 0':s:true:minus:false:ge:div:if Generator Equations: gen_0':s:true:minus:false:ge:div:if2_0(0) <=> 0' gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) <=> s(gen_0':s:true:minus:false:ge:div:if2_0(x)) The following defined symbols remain to be analysed: minus_active, mark, ge_active They will be analysed ascendingly in the following order: minus_active < mark ge_active < mark ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Types: minus_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if 0' :: 0':s:true:minus:false:ge:div:if mark :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if s :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if ge_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if true :: 0':s:true:minus:false:ge:div:if minus :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if false :: 0':s:true:minus:false:ge:div:if ge :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if gen_0':s:true:minus:false:ge:div:if2_0 :: Nat -> 0':s:true:minus:false:ge:div:if Lemmas: minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) -> gen_0':s:true:minus:false:ge:div:if2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:true:minus:false:ge:div:if2_0(0) <=> 0' gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) <=> s(gen_0':s:true:minus:false:ge:div:if2_0(x)) The following defined symbols remain to be analysed: ge_active, mark They will be analysed ascendingly in the following order: ge_active < mark ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n700_0), gen_0':s:true:minus:false:ge:div:if2_0(n700_0)) -> true, rt in Omega(1 + n700_0) Induction Base: ge_active(gen_0':s:true:minus:false:ge:div:if2_0(0), gen_0':s:true:minus:false:ge:div:if2_0(0)) ->_R^Omega(1) true Induction Step: ge_active(gen_0':s:true:minus:false:ge:div:if2_0(+(n700_0, 1)), gen_0':s:true:minus:false:ge:div:if2_0(+(n700_0, 1))) ->_R^Omega(1) ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n700_0), gen_0':s:true:minus:false:ge:div:if2_0(n700_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: minus_active(0', y) -> 0' mark(0') -> 0' minus_active(s(x), s(y)) -> minus_active(x, y) mark(s(x)) -> s(mark(x)) ge_active(x, 0') -> true mark(minus(x, y)) -> minus_active(x, y) ge_active(0', s(y)) -> false mark(ge(x, y)) -> ge_active(x, y) ge_active(s(x), s(y)) -> ge_active(x, y) mark(div(x, y)) -> div_active(mark(x), y) div_active(0', s(y)) -> 0' mark(if(x, y, z)) -> if_active(mark(x), y, z) div_active(s(x), s(y)) -> if_active(ge_active(x, y), s(div(minus(x, y), s(y))), 0') if_active(true, x, y) -> mark(x) minus_active(x, y) -> minus(x, y) if_active(false, x, y) -> mark(y) ge_active(x, y) -> ge(x, y) if_active(x, y, z) -> if(x, y, z) div_active(x, y) -> div(x, y) Types: minus_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if 0' :: 0':s:true:minus:false:ge:div:if mark :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if s :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if ge_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if true :: 0':s:true:minus:false:ge:div:if minus :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if false :: 0':s:true:minus:false:ge:div:if ge :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if div_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if if_active :: 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if -> 0':s:true:minus:false:ge:div:if hole_0':s:true:minus:false:ge:div:if1_0 :: 0':s:true:minus:false:ge:div:if gen_0':s:true:minus:false:ge:div:if2_0 :: Nat -> 0':s:true:minus:false:ge:div:if Lemmas: minus_active(gen_0':s:true:minus:false:ge:div:if2_0(n4_0), gen_0':s:true:minus:false:ge:div:if2_0(n4_0)) -> gen_0':s:true:minus:false:ge:div:if2_0(0), rt in Omega(1 + n4_0) ge_active(gen_0':s:true:minus:false:ge:div:if2_0(n700_0), gen_0':s:true:minus:false:ge:div:if2_0(n700_0)) -> true, rt in Omega(1 + n700_0) Generator Equations: gen_0':s:true:minus:false:ge:div:if2_0(0) <=> 0' gen_0':s:true:minus:false:ge:div:if2_0(+(x, 1)) <=> s(gen_0':s:true:minus:false:ge:div:if2_0(x)) The following defined symbols remain to be analysed: mark ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':s:true:minus:false:ge:div:if2_0(n1492_0)) -> gen_0':s:true:minus:false:ge:div:if2_0(n1492_0), rt in Omega(1 + n1492_0) Induction Base: mark(gen_0':s:true:minus:false:ge:div:if2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':s:true:minus:false:ge:div:if2_0(+(n1492_0, 1))) ->_R^Omega(1) s(mark(gen_0':s:true:minus:false:ge:div:if2_0(n1492_0))) ->_IH s(gen_0':s:true:minus:false:ge:div:if2_0(c1493_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)