WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) InliningProof [UPPER BOUND(ID), 129 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 99 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 7 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 207 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 57 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 160 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 45 ms] (34) CpxRNTS (35) FinalProof [FINISHED, 0 ms] (36) BOUNDS(1, n^1) (37) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (38) TRS for Loop Detection (39) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (40) BEST (41) proven lower bound (42) LowerBoundPropagationProof [FINISHED, 0 ms] (43) BOUNDS(n^1, INF) (44) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] from(X) -> n__from(X) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] from(X) -> n__from(X) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:cons cons :: s:0 -> n__from:cons -> n__from:cons n__from :: s:0 -> n__from:cons s :: s:0 -> s:0 sel :: s:0 -> n__from:cons -> s:0 0 :: s:0 activate :: n__from:cons -> n__from:cons Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: sel_2 (c) The following functions are completely defined: activate_1 from_1 Due to the following rules being added: none And the following fresh constants: const ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) [1] from(X) -> n__from(X) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:cons cons :: s:0 -> n__from:cons -> n__from:cons n__from :: s:0 -> n__from:cons s :: s:0 -> s:0 sel :: s:0 -> n__from:cons -> s:0 0 :: s:0 activate :: n__from:cons -> n__from:cons const :: n__from:cons Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) [1] sel(0, cons(X, Y)) -> X [1] sel(s(X), cons(Y, n__from(X'))) -> sel(X, from(X')) [2] sel(s(X), cons(Y, Z)) -> sel(X, Z) [2] from(X) -> n__from(X) [1] activate(n__from(X)) -> from(X) [1] activate(X) -> X [1] The TRS has the following type information: from :: s:0 -> n__from:cons cons :: s:0 -> n__from:cons -> n__from:cons n__from :: s:0 -> n__from:cons s :: s:0 -> s:0 sel :: s:0 -> n__from:cons -> s:0 0 :: s:0 activate :: n__from:cons -> n__from:cons const :: n__from:cons Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 const => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 1 }-> from(X) :|: z = 1 + X, X >= 0 from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z sel(z, z') -{ 2 }-> sel(X, from(X')) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0 ---------------------------------------- (11) InliningProof (UPPER BOUND(ID)) Inlined the following terminating rules on right-hand sides where appropriate: from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> X :|: X >= 0, z = X activate(z) -{ 2 }-> 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X' from(z) -{ 1 }-> 1 + X :|: X >= 0, z = X from(z) -{ 1 }-> 1 + X + (1 + (1 + X)) :|: X >= 0, z = X sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(X, Z) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(X, 1 + X'') :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(X, 1 + X'' + (1 + (1 + X''))) :|: z = 1 + X, Y >= 0, z' = 1 + Y + (1 + X'), X >= 0, X' >= 0, X'' >= 0, X' = X'' ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { activate } { sel } { from } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {activate}, {sel}, {from} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {activate}, {sel}, {from} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 2*z ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {activate}, {sel}, {from} Previous analysis results are: activate: runtime: ?, size: O(n^1) [1 + 2*z] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: activate after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 3 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {sel}, {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {sel}, {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: sel after applying outer abstraction to obtain an ITS, resulting in: EXP with polynomial bound: ? ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {sel}, {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] sel: runtime: ?, size: EXP ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: sel after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + 8*z ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ 2 }-> sel(z - 1, Z) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'') :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ 3 }-> sel(z - 1, 1 + X'' + (1 + (1 + X''))) :|: Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] sel: runtime: O(n^1) [1 + 8*z], size: EXP ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] sel: runtime: O(n^1) [1 + 8*z], size: EXP ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 3 + 2*z ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: {from} Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] sel: runtime: O(n^1) [1 + 8*z], size: EXP from: runtime: ?, size: O(n^1) [3 + 2*z] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: from after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: activate(z) -{ 1 }-> z :|: z >= 0 activate(z) -{ 2 }-> 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X' activate(z) -{ 2 }-> 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X' from(z) -{ 1 }-> 1 + z :|: z >= 0 from(z) -{ 1 }-> 1 + z + (1 + (1 + z)) :|: z >= 0 sel(z, z') -{ 1 }-> X :|: Y >= 0, X >= 0, z' = 1 + X + Y, z = 0 sel(z, z') -{ -5 + 8*z }-> s :|: s >= 0, s <= inf, Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z sel(z, z') -{ -4 + 8*z }-> s' :|: s' >= 0, s' <= inf', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' sel(z, z') -{ -4 + 8*z }-> s'' :|: s'' >= 0, s'' <= inf'', Y >= 0, z' = 1 + Y + (1 + X'), z - 1 >= 0, X' >= 0, X'' >= 0, X' = X'' Function symbols to be analyzed: Previous analysis results are: activate: runtime: O(1) [3], size: O(n^1) [1 + 2*z] sel: runtime: O(n^1) [1 + 8*z], size: EXP from: runtime: O(1) [1], size: O(n^1) [3 + 2*z] ---------------------------------------- (35) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (36) BOUNDS(1, n^1) ---------------------------------------- (37) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (38) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (39) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence sel(s(X), cons(Y, Z)) ->^+ sel(X, Z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / s(X), Z / cons(Y, Z)]. The result substitution is [ ]. ---------------------------------------- (40) Complex Obligation (BEST) ---------------------------------------- (41) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (42) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (43) BOUNDS(n^1, INF) ---------------------------------------- (44) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: from(X) -> cons(X, n__from(s(X))) sel(0, cons(X, Y)) -> X sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) from(X) -> n__from(X) activate(n__from(X)) -> from(X) activate(X) -> X S is empty. Rewrite Strategy: INNERMOST