WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). (0) CpxTRS (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxTRS (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) typed CpxTrs (5) OrderProof [LOWER BOUND(ID), 0 ms] (6) typed CpxTrs (7) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] (14) typed CpxTrs (15) RewriteLemmaProof [LOWER BOUND(ID), 94 ms] (16) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__minus(0, Y) -> 0 a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0) -> true a__geq(0, s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0, s(Y)) -> 0 a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0) a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0) -> 0 mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Innermost TRS: Rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Types: a__minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if 0' :: 0':s:true:false:minus:div:geq:if s :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if true :: 0':s:true:false:minus:div:geq:if false :: 0':s:true:false:minus:div:geq:if a__div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if mark :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if gen_0':s:true:false:minus:div:geq:if2_0 :: Nat -> 0':s:true:false:minus:div:geq:if ---------------------------------------- (5) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a__minus, a__geq, mark They will be analysed ascendingly in the following order: a__minus < mark a__geq < mark ---------------------------------------- (6) Obligation: Innermost TRS: Rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Types: a__minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if 0' :: 0':s:true:false:minus:div:geq:if s :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if true :: 0':s:true:false:minus:div:geq:if false :: 0':s:true:false:minus:div:geq:if a__div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if mark :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if gen_0':s:true:false:minus:div:geq:if2_0 :: Nat -> 0':s:true:false:minus:div:geq:if Generator Equations: gen_0':s:true:false:minus:div:geq:if2_0(0) <=> 0' gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:minus:div:geq:if2_0(x)) The following defined symbols remain to be analysed: a__minus, a__geq, mark They will be analysed ascendingly in the following order: a__minus < mark a__geq < mark ---------------------------------------- (7) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) -> gen_0':s:true:false:minus:div:geq:if2_0(0), rt in Omega(1 + n4_0) Induction Base: a__minus(gen_0':s:true:false:minus:div:geq:if2_0(0), gen_0':s:true:false:minus:div:geq:if2_0(0)) ->_R^Omega(1) 0' Induction Step: a__minus(gen_0':s:true:false:minus:div:geq:if2_0(+(n4_0, 1)), gen_0':s:true:false:minus:div:geq:if2_0(+(n4_0, 1))) ->_R^Omega(1) a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) ->_IH gen_0':s:true:false:minus:div:geq:if2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Types: a__minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if 0' :: 0':s:true:false:minus:div:geq:if s :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if true :: 0':s:true:false:minus:div:geq:if false :: 0':s:true:false:minus:div:geq:if a__div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if mark :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if gen_0':s:true:false:minus:div:geq:if2_0 :: Nat -> 0':s:true:false:minus:div:geq:if Generator Equations: gen_0':s:true:false:minus:div:geq:if2_0(0) <=> 0' gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:minus:div:geq:if2_0(x)) The following defined symbols remain to be analysed: a__minus, a__geq, mark They will be analysed ascendingly in the following order: a__minus < mark a__geq < mark ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Innermost TRS: Rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Types: a__minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if 0' :: 0':s:true:false:minus:div:geq:if s :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if true :: 0':s:true:false:minus:div:geq:if false :: 0':s:true:false:minus:div:geq:if a__div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if mark :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if gen_0':s:true:false:minus:div:geq:if2_0 :: Nat -> 0':s:true:false:minus:div:geq:if Lemmas: a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) -> gen_0':s:true:false:minus:div:geq:if2_0(0), rt in Omega(1 + n4_0) Generator Equations: gen_0':s:true:false:minus:div:geq:if2_0(0) <=> 0' gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:minus:div:geq:if2_0(x)) The following defined symbols remain to be analysed: a__geq, mark They will be analysed ascendingly in the following order: a__geq < mark ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n752_0), gen_0':s:true:false:minus:div:geq:if2_0(n752_0)) -> true, rt in Omega(1 + n752_0) Induction Base: a__geq(gen_0':s:true:false:minus:div:geq:if2_0(0), gen_0':s:true:false:minus:div:geq:if2_0(0)) ->_R^Omega(1) true Induction Step: a__geq(gen_0':s:true:false:minus:div:geq:if2_0(+(n752_0, 1)), gen_0':s:true:false:minus:div:geq:if2_0(+(n752_0, 1))) ->_R^Omega(1) a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n752_0), gen_0':s:true:false:minus:div:geq:if2_0(n752_0)) ->_IH true We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Obligation: Innermost TRS: Rules: a__minus(0', Y) -> 0' a__minus(s(X), s(Y)) -> a__minus(X, Y) a__geq(X, 0') -> true a__geq(0', s(Y)) -> false a__geq(s(X), s(Y)) -> a__geq(X, Y) a__div(0', s(Y)) -> 0' a__div(s(X), s(Y)) -> a__if(a__geq(X, Y), s(div(minus(X, Y), s(Y))), 0') a__if(true, X, Y) -> mark(X) a__if(false, X, Y) -> mark(Y) mark(minus(X1, X2)) -> a__minus(X1, X2) mark(geq(X1, X2)) -> a__geq(X1, X2) mark(div(X1, X2)) -> a__div(mark(X1), X2) mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) mark(0') -> 0' mark(s(X)) -> s(mark(X)) mark(true) -> true mark(false) -> false a__minus(X1, X2) -> minus(X1, X2) a__geq(X1, X2) -> geq(X1, X2) a__div(X1, X2) -> div(X1, X2) a__if(X1, X2, X3) -> if(X1, X2, X3) Types: a__minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if 0' :: 0':s:true:false:minus:div:geq:if s :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if true :: 0':s:true:false:minus:div:geq:if false :: 0':s:true:false:minus:div:geq:if a__div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if a__if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if div :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if minus :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if mark :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if geq :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if if :: 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if -> 0':s:true:false:minus:div:geq:if hole_0':s:true:false:minus:div:geq:if1_0 :: 0':s:true:false:minus:div:geq:if gen_0':s:true:false:minus:div:geq:if2_0 :: Nat -> 0':s:true:false:minus:div:geq:if Lemmas: a__minus(gen_0':s:true:false:minus:div:geq:if2_0(n4_0), gen_0':s:true:false:minus:div:geq:if2_0(n4_0)) -> gen_0':s:true:false:minus:div:geq:if2_0(0), rt in Omega(1 + n4_0) a__geq(gen_0':s:true:false:minus:div:geq:if2_0(n752_0), gen_0':s:true:false:minus:div:geq:if2_0(n752_0)) -> true, rt in Omega(1 + n752_0) Generator Equations: gen_0':s:true:false:minus:div:geq:if2_0(0) <=> 0' gen_0':s:true:false:minus:div:geq:if2_0(+(x, 1)) <=> s(gen_0':s:true:false:minus:div:geq:if2_0(x)) The following defined symbols remain to be analysed: mark ---------------------------------------- (15) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: mark(gen_0':s:true:false:minus:div:geq:if2_0(n1592_0)) -> gen_0':s:true:false:minus:div:geq:if2_0(n1592_0), rt in Omega(1 + n1592_0) Induction Base: mark(gen_0':s:true:false:minus:div:geq:if2_0(0)) ->_R^Omega(1) 0' Induction Step: mark(gen_0':s:true:false:minus:div:geq:if2_0(+(n1592_0, 1))) ->_R^Omega(1) s(mark(gen_0':s:true:false:minus:div:geq:if2_0(n1592_0))) ->_IH s(gen_0':s:true:false:minus:div:geq:if2_0(c1593_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (16) BOUNDS(1, INF)