WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 6 ms] (8) CpxRNTS (9) CompleteCoflocoProof [FINISHED, 2212 ms] (10) BOUNDS(1, n^3) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s if_minus :: true:false -> 0:s -> 0:s -> 0:s gcd :: 0:s -> 0:s -> 0:s if_gcd :: true:false -> 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: if_minus(v0, v1, v2) -> null_if_minus [0] if_gcd(v0, v1, v2) -> null_if_gcd [0] le(v0, v1) -> null_le [0] minus(v0, v1) -> null_minus [0] gcd(v0, v1) -> null_gcd [0] And the following fresh constants: null_if_minus, null_if_gcd, null_le, null_minus, null_gcd ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, y) -> true [1] le(s(x), 0) -> false [1] le(s(x), s(y)) -> le(x, y) [1] minus(0, y) -> 0 [1] minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) [1] if_minus(true, s(x), y) -> 0 [1] if_minus(false, s(x), y) -> s(minus(x, y)) [1] gcd(0, y) -> y [1] gcd(s(x), 0) -> s(x) [1] gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) [1] if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) [1] if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) [1] if_minus(v0, v1, v2) -> null_if_minus [0] if_gcd(v0, v1, v2) -> null_if_gcd [0] le(v0, v1) -> null_le [0] minus(v0, v1) -> null_minus [0] gcd(v0, v1) -> null_gcd [0] The TRS has the following type information: le :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> true:false:null_le 0 :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd true :: true:false:null_le s :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd false :: true:false:null_le minus :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd if_minus :: true:false:null_le -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd gcd :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd if_gcd :: true:false:null_le -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd -> 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd null_if_minus :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd null_if_gcd :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd null_le :: true:false:null_le null_minus :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd null_gcd :: 0:s:null_if_minus:null_if_gcd:null_minus:null_gcd Rewrite Strategy: INNERMOST ---------------------------------------- (7) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 2 false => 1 null_if_minus => 0 null_if_gcd => 0 null_le => 0 null_minus => 0 null_gcd => 0 ---------------------------------------- (8) Obligation: Complexity RNTS consisting of the following rules: gcd(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y gcd(z, z') -{ 1 }-> if_gcd(le(y, x), 1 + x, 1 + y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x gcd(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 gcd(z, z') -{ 1 }-> 1 + x :|: x >= 0, z = 1 + x, z' = 0 if_gcd(z, z', z'') -{ 1 }-> gcd(minus(x, y), 1 + y) :|: z = 2, z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y if_gcd(z, z', z'') -{ 1 }-> gcd(minus(y, x), 1 + x) :|: z' = 1 + x, z = 1, x >= 0, y >= 0, z'' = 1 + y if_gcd(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if_minus(z, z', z'') -{ 1 }-> 0 :|: z = 2, z' = 1 + x, z'' = y, x >= 0, y >= 0 if_minus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 if_minus(z, z', z'') -{ 1 }-> 1 + minus(x, y) :|: z' = 1 + x, z'' = y, z = 1, x >= 0, y >= 0 le(z, z') -{ 1 }-> le(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x le(z, z') -{ 1 }-> 2 :|: y >= 0, z = 0, z' = y le(z, z') -{ 1 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 le(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 minus(z, z') -{ 1 }-> if_minus(le(1 + x, y), 1 + x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y minus(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (9) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V, V11),0,[le(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V11),0,[minus(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V11),0,[fun(V1, V, V11, Out)],[V1 >= 0,V >= 0,V11 >= 0]). eq(start(V1, V, V11),0,[gcd(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V, V11),0,[fun1(V1, V, V11, Out)],[V1 >= 0,V >= 0,V11 >= 0]). eq(le(V1, V, Out),1,[],[Out = 2,V2 >= 0,V1 = 0,V = V2]). eq(le(V1, V, Out),1,[],[Out = 1,V3 >= 0,V1 = 1 + V3,V = 0]). eq(le(V1, V, Out),1,[le(V4, V5, Ret)],[Out = Ret,V = 1 + V5,V4 >= 0,V5 >= 0,V1 = 1 + V4]). eq(minus(V1, V, Out),1,[],[Out = 0,V6 >= 0,V1 = 0,V = V6]). eq(minus(V1, V, Out),1,[le(1 + V7, V8, Ret0),fun(Ret0, 1 + V7, V8, Ret1)],[Out = Ret1,V7 >= 0,V8 >= 0,V1 = 1 + V7,V = V8]). eq(fun(V1, V, V11, Out),1,[],[Out = 0,V1 = 2,V = 1 + V9,V11 = V10,V9 >= 0,V10 >= 0]). eq(fun(V1, V, V11, Out),1,[minus(V12, V13, Ret11)],[Out = 1 + Ret11,V = 1 + V12,V11 = V13,V1 = 1,V12 >= 0,V13 >= 0]). eq(gcd(V1, V, Out),1,[],[Out = V14,V14 >= 0,V1 = 0,V = V14]). eq(gcd(V1, V, Out),1,[],[Out = 1 + V15,V15 >= 0,V1 = 1 + V15,V = 0]). eq(gcd(V1, V, Out),1,[le(V16, V17, Ret01),fun1(Ret01, 1 + V17, 1 + V16, Ret2)],[Out = Ret2,V = 1 + V16,V17 >= 0,V16 >= 0,V1 = 1 + V17]). eq(fun1(V1, V, V11, Out),1,[minus(V18, V19, Ret02),gcd(Ret02, 1 + V19, Ret3)],[Out = Ret3,V1 = 2,V = 1 + V18,V18 >= 0,V19 >= 0,V11 = 1 + V19]). eq(fun1(V1, V, V11, Out),1,[minus(V21, V20, Ret03),gcd(Ret03, 1 + V20, Ret4)],[Out = Ret4,V = 1 + V20,V1 = 1,V20 >= 0,V21 >= 0,V11 = 1 + V21]). eq(fun(V1, V, V11, Out),0,[],[Out = 0,V23 >= 0,V11 = V24,V22 >= 0,V1 = V23,V = V22,V24 >= 0]). eq(fun1(V1, V, V11, Out),0,[],[Out = 0,V27 >= 0,V11 = V25,V26 >= 0,V1 = V27,V = V26,V25 >= 0]). eq(le(V1, V, Out),0,[],[Out = 0,V29 >= 0,V28 >= 0,V1 = V29,V = V28]). eq(minus(V1, V, Out),0,[],[Out = 0,V30 >= 0,V31 >= 0,V1 = V30,V = V31]). eq(gcd(V1, V, Out),0,[],[Out = 0,V33 >= 0,V32 >= 0,V1 = V33,V = V32]). input_output_vars(le(V1,V,Out),[V1,V],[Out]). input_output_vars(minus(V1,V,Out),[V1,V],[Out]). input_output_vars(fun(V1,V,V11,Out),[V1,V,V11],[Out]). input_output_vars(gcd(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(V1,V,V11,Out),[V1,V,V11],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive : [le/3] 1. recursive : [fun/4,minus/3] 2. recursive : [fun1/4,gcd/3] 3. non_recursive : [start/3] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into le/3 1. SCC is partially evaluated into minus/3 2. SCC is partially evaluated into gcd/3 3. SCC is partially evaluated into start/3 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations le/3 * CE 23 is refined into CE [24] * CE 21 is refined into CE [25] * CE 20 is refined into CE [26] * CE 22 is refined into CE [27] ### Cost equations --> "Loop" of le/3 * CEs [27] --> Loop 14 * CEs [24] --> Loop 15 * CEs [25] --> Loop 16 * CEs [26] --> Loop 17 ### Ranking functions of CR le(V1,V,Out) * RF of phase [14]: [V,V1] #### Partial ranking functions of CR le(V1,V,Out) * Partial RF of phase [14]: - RF of loop [14:1]: V V1 ### Specialization of cost equations minus/3 * CE 9 is refined into CE [28,29,30,31] * CE 11 is refined into CE [32] * CE 12 is refined into CE [33] * CE 13 is refined into CE [34] * CE 10 is refined into CE [35,36] ### Cost equations --> "Loop" of minus/3 * CEs [36] --> Loop 18 * CEs [35] --> Loop 19 * CEs [28] --> Loop 20 * CEs [29,30,31,32,33,34] --> Loop 21 ### Ranking functions of CR minus(V1,V,Out) * RF of phase [18]: [V1-1,V1-V] * RF of phase [19]: [V1] #### Partial ranking functions of CR minus(V1,V,Out) * Partial RF of phase [18]: - RF of loop [18:1]: V1-1 V1-V * Partial RF of phase [19]: - RF of loop [19:1]: V1 ### Specialization of cost equations gcd/3 * CE 14 is refined into CE [37,38,39,40,41] * CE 19 is refined into CE [42] * CE 18 is refined into CE [43] * CE 17 is refined into CE [44] * CE 16 is refined into CE [45,46,47,48] * CE 15 is refined into CE [49,50,51,52] ### Cost equations --> "Loop" of gcd/3 * CEs [52] --> Loop 22 * CEs [48] --> Loop 23 * CEs [51] --> Loop 24 * CEs [47] --> Loop 25 * CEs [46] --> Loop 26 * CEs [45] --> Loop 27 * CEs [50] --> Loop 28 * CEs [49] --> Loop 29 * CEs [37] --> Loop 30 * CEs [43] --> Loop 31 * CEs [38,39,40,41,42] --> Loop 32 * CEs [44] --> Loop 33 ### Ranking functions of CR gcd(V1,V,Out) * RF of phase [22,23]: [V1/2+V/2-2] * RF of phase [26]: [V1-1] #### Partial ranking functions of CR gcd(V1,V,Out) * Partial RF of phase [22,23]: - RF of loop [22:1]: V-2 V1/2+V/2-2 - RF of loop [23:1]: V1/2-1 depends on loops [22:1] V1/2-V/2 depends on loops [22:1] * Partial RF of phase [26]: - RF of loop [26:1]: V1-1 ### Specialization of cost equations start/3 * CE 3 is refined into CE [53,54,55,56,57,58,59,60,61,62,63] * CE 5 is refined into CE [64] * CE 1 is refined into CE [65] * CE 2 is refined into CE [66,67,68,69,70,71,72,73,74,75,76] * CE 4 is refined into CE [77,78,79] * CE 6 is refined into CE [80,81,82,83,84] * CE 7 is refined into CE [85,86,87] * CE 8 is refined into CE [88,89,90,91,92,93,94,95,96,97] ### Cost equations --> "Loop" of start/3 * CEs [92,93] --> Loop 34 * CEs [81,86,91] --> Loop 35 * CEs [53,54,55,56,57,58,59,60,61,62,63,64] --> Loop 36 * CEs [78,90] --> Loop 37 * CEs [66,67,68,69,70,71,72,73,74,75,76,77,79] --> Loop 38 * CEs [65,80,82,83,84,85,87,88,89,94,95,96,97] --> Loop 39 ### Ranking functions of CR start(V1,V,V11) #### Partial ranking functions of CR start(V1,V,V11) Computing Bounds ===================================== #### Cost of chains of le(V1,V,Out): * Chain [[14],17]: 1*it(14)+1 Such that:it(14) =< V1 with precondition: [Out=2,V1>=1,V>=V1] * Chain [[14],16]: 1*it(14)+1 Such that:it(14) =< V with precondition: [Out=1,V>=1,V1>=V+1] * Chain [[14],15]: 1*it(14)+0 Such that:it(14) =< V with precondition: [Out=0,V1>=1,V>=1] * Chain [17]: 1 with precondition: [V1=0,Out=2,V>=0] * Chain [16]: 1 with precondition: [V=0,Out=1,V1>=1] * Chain [15]: 0 with precondition: [Out=0,V1>=0,V>=0] #### Cost of chains of minus(V1,V,Out): * Chain [[19],21]: 3*it(19)+2*s(4)+3 Such that:aux(1) =< V1-Out it(19) =< Out s(4) =< aux(1) with precondition: [V=0,Out>=1,V1>=Out] * Chain [[19],20]: 3*it(19)+2 Such that:it(19) =< Out with precondition: [V=0,Out>=1,V1>=Out+1] * Chain [[18],21]: 3*it(18)+2*s(2)+2*s(4)+1*s(8)+3 Such that:aux(1) =< V1-Out it(18) =< Out aux(4) =< V s(4) =< aux(1) s(2) =< aux(4) s(8) =< it(18)*aux(4) with precondition: [V>=1,Out>=1,V1>=Out+V] * Chain [21]: 2*s(2)+2*s(4)+3 Such that:aux(1) =< V1 aux(2) =< V s(4) =< aux(1) s(2) =< aux(2) with precondition: [Out=0,V1>=0,V>=0] * Chain [20]: 2 with precondition: [V=0,Out=0,V1>=1] #### Cost of chains of gcd(V1,V,Out): * Chain [[26],32]: 10*it(26)+1*s(19)+6*s(28)+2 Such that:s(19) =< 1 aux(10) =< V1 it(26) =< aux(10) s(31) =< it(26)*aux(10) s(28) =< s(31) with precondition: [V=1,Out=0,V1>=2] * Chain [[26],30]: 8*it(26)+6*s(28)+2 Such that:aux(11) =< V1 it(26) =< aux(11) s(31) =< it(26)*aux(11) s(28) =< s(31) with precondition: [V=1,Out=0,V1>=2] * Chain [[26],27,33]: 10*it(26)+6*s(28)+7 Such that:aux(12) =< V1 it(26) =< aux(12) s(31) =< it(26)*aux(12) s(28) =< s(31) with precondition: [V=1,Out=1,V1>=2] * Chain [[26],27,32]: 10*it(26)+1*s(19)+6*s(28)+8 Such that:s(19) =< 1 aux(13) =< V1 it(26) =< aux(13) s(31) =< it(26)*aux(13) s(28) =< s(31) with precondition: [V=1,Out=0,V1>=2] * Chain [[22,23],32]: 6*it(22)+6*it(23)+8*s(17)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+2 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(48) =< V1 aux(49) =< V1+V aux(50) =< V1/2 aux(51) =< V s(17) =< aux(49) it(23) =< aux(49) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(49) it(22) =< aux(51) s(63) =< aux(51) aux(16) =< aux(46) aux(16) =< aux(51) aux(35) =< aux(51) aux(27) =< aux(49)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(50) s(73) =< aux(23)+aux(48) s(72) =< aux(23)+aux(48) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(49) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(51) s(65) =< s(63)*aux(49) with precondition: [Out=0,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],29,33]: 6*it(22)+6*it(23)+7*s(62)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+7 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(52) =< V1 aux(53) =< V1+V aux(54) =< V1/2 aux(55) =< V s(62) =< aux(53) it(23) =< aux(53) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(53) it(22) =< aux(55) s(63) =< aux(55) aux(16) =< aux(46) aux(16) =< aux(55) aux(35) =< aux(55) aux(27) =< aux(53)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(54) s(73) =< aux(23)+aux(52) s(72) =< aux(23)+aux(52) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(53) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(55) s(65) =< s(63)*aux(53) with precondition: [Out=1,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],29,32]: 6*it(22)+6*it(23)+1*s(19)+7*s(62)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:s(19) =< 1 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(56) =< V1 aux(57) =< V1+V aux(58) =< V1/2 aux(59) =< V s(62) =< aux(57) it(23) =< aux(57) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(57) it(22) =< aux(59) s(63) =< aux(59) aux(16) =< aux(46) aux(16) =< aux(59) aux(35) =< aux(59) aux(27) =< aux(57)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(58) s(73) =< aux(23)+aux(56) s(72) =< aux(23)+aux(56) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(57) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(59) s(65) =< s(63)*aux(57) with precondition: [Out=0,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],28,[26],32]: 6*it(22)+6*it(23)+23*it(26)+1*s(19)+6*s(28)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:s(19) =< 1 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(61) =< V1 aux(62) =< V1+V aux(63) =< V1/2 aux(64) =< V it(26) =< aux(62) s(31) =< it(26)*aux(62) s(28) =< s(31) it(23) =< aux(62) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(62) it(22) =< aux(64) s(63) =< aux(64) aux(16) =< aux(46) aux(16) =< aux(64) aux(35) =< aux(64) aux(27) =< aux(62)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(63) s(73) =< aux(23)+aux(61) s(72) =< aux(23)+aux(61) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(62) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(64) s(65) =< s(63)*aux(62) with precondition: [Out=0,V1>=3,V>=3,V+V1>=7] * Chain [[22,23],28,[26],30]: 6*it(22)+6*it(23)+21*it(26)+6*s(28)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(66) =< V1 aux(67) =< V1+V aux(68) =< V1/2 aux(69) =< V it(26) =< aux(67) s(31) =< it(26)*aux(67) s(28) =< s(31) it(23) =< aux(67) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(67) it(22) =< aux(69) s(63) =< aux(69) aux(16) =< aux(46) aux(16) =< aux(69) aux(35) =< aux(69) aux(27) =< aux(67)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(68) s(73) =< aux(23)+aux(66) s(72) =< aux(23)+aux(66) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(67) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(69) s(65) =< s(63)*aux(67) with precondition: [Out=0,V1>=3,V>=3,V+V1>=7] * Chain [[22,23],28,[26],27,33]: 6*it(22)+6*it(23)+23*it(26)+6*s(28)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+13 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(71) =< V1 aux(72) =< V1+V aux(73) =< V1/2 aux(74) =< V it(26) =< aux(72) s(31) =< it(26)*aux(72) s(28) =< s(31) it(23) =< aux(72) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(72) it(22) =< aux(74) s(63) =< aux(74) aux(16) =< aux(46) aux(16) =< aux(74) aux(35) =< aux(74) aux(27) =< aux(72)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(73) s(73) =< aux(23)+aux(71) s(72) =< aux(23)+aux(71) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(72) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(74) s(65) =< s(63)*aux(72) with precondition: [Out=1,V1>=3,V>=3,V+V1>=7] * Chain [[22,23],28,[26],27,32]: 6*it(22)+6*it(23)+23*it(26)+1*s(19)+6*s(28)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+14 Such that:s(19) =< 1 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(76) =< V1 aux(77) =< V1+V aux(78) =< V1/2 aux(79) =< V it(26) =< aux(77) s(31) =< it(26)*aux(77) s(28) =< s(31) it(23) =< aux(77) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(77) it(22) =< aux(79) s(63) =< aux(79) aux(16) =< aux(46) aux(16) =< aux(79) aux(35) =< aux(79) aux(27) =< aux(77)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(78) s(73) =< aux(23)+aux(76) s(72) =< aux(23)+aux(76) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(77) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(79) s(65) =< s(63)*aux(77) with precondition: [Out=0,V1>=3,V>=3,V+V1>=7] * Chain [[22,23],28,32]: 6*it(22)+6*it(23)+15*s(17)+1*s(19)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:s(19) =< 1 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(81) =< V1 aux(82) =< V1+V aux(83) =< V1/2 aux(84) =< V s(17) =< aux(82) it(23) =< aux(82) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(82) it(22) =< aux(84) s(63) =< aux(84) aux(16) =< aux(46) aux(16) =< aux(84) aux(35) =< aux(84) aux(27) =< aux(82)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(83) s(73) =< aux(23)+aux(81) s(72) =< aux(23)+aux(81) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(82) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(84) s(65) =< s(63)*aux(82) with precondition: [Out=0,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],28,30]: 6*it(22)+6*it(23)+13*s(62)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(86) =< V1 aux(87) =< V1+V aux(88) =< V1/2 aux(89) =< V s(62) =< aux(87) it(23) =< aux(87) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(87) it(22) =< aux(89) s(63) =< aux(89) aux(16) =< aux(46) aux(16) =< aux(89) aux(35) =< aux(89) aux(27) =< aux(87)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(88) s(73) =< aux(23)+aux(86) s(72) =< aux(23)+aux(86) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(87) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(89) s(65) =< s(63)*aux(87) with precondition: [Out=0,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],28,27,33]: 6*it(22)+6*it(23)+15*s(34)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+13 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(91) =< V1 aux(92) =< V1+V aux(93) =< V1/2 aux(94) =< V s(34) =< aux(92) it(23) =< aux(92) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(92) it(22) =< aux(94) s(63) =< aux(94) aux(16) =< aux(46) aux(16) =< aux(94) aux(35) =< aux(94) aux(27) =< aux(92)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(93) s(73) =< aux(23)+aux(91) s(72) =< aux(23)+aux(91) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(92) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(94) s(65) =< s(63)*aux(92) with precondition: [Out=1,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],28,27,32]: 6*it(22)+6*it(23)+1*s(19)+15*s(34)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+14 Such that:s(19) =< 1 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(96) =< V1 aux(97) =< V1+V aux(98) =< V1/2 aux(99) =< V s(34) =< aux(97) it(23) =< aux(97) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(97) it(22) =< aux(99) s(63) =< aux(99) aux(16) =< aux(46) aux(16) =< aux(99) aux(35) =< aux(99) aux(27) =< aux(97)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(98) s(73) =< aux(23)+aux(96) s(72) =< aux(23)+aux(96) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(97) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(99) s(65) =< s(63)*aux(97) with precondition: [Out=0,V1>=2,V>=2,V+V1>=5] * Chain [[22,23],25,33]: 6*it(22)+6*it(23)+5*s(62)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+3*s(82)+2*s(85)+7 Such that:aux(38) =< V1 aux(39) =< V1+V aux(41) =< V1-Out aux(17) =< V1/2 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(21) =< V1/2-Out/2 aux(44) =< V aux(45) =< V-Out aux(46) =< V/2 aux(47) =< V/2-Out/2 aux(100) =< Out aux(101) =< V1+V-Out s(82) =< aux(100) s(85) =< aux(101) it(23) =< aux(39) s(66) =< aux(39) it(23) =< aux(101) s(66) =< aux(101) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(101) it(22) =< aux(44) s(63) =< aux(44) it(22) =< aux(45) s(63) =< aux(45) aux(16) =< aux(46) aux(16) =< aux(47) aux(35) =< aux(44) aux(27) =< aux(39)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(17) s(73) =< aux(23)+aux(41) s(73) =< aux(23)+aux(38) s(72) =< aux(23)+aux(41) s(72) =< aux(23)+aux(38) it(23) =< aux(16)+aux(21) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(39) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(44) s(62) =< s(66) s(65) =< s(63)*aux(39) with precondition: [Out>=2,V1>=Out,V>=Out,V+V1>=3*Out] * Chain [[22,23],25,32]: 6*it(22)+6*it(23)+11*s(19)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(103) =< V1 aux(104) =< V1+V aux(105) =< V1/2 aux(106) =< V s(19) =< aux(104) it(23) =< aux(104) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(104) it(22) =< aux(106) s(63) =< aux(106) aux(16) =< aux(46) aux(16) =< aux(106) aux(35) =< aux(106) aux(27) =< aux(104)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(105) s(73) =< aux(23)+aux(103) s(72) =< aux(23)+aux(103) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(104) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(106) s(65) =< s(63)*aux(104) with precondition: [Out=0,V1>=2,V>=2,V+V1>=6] * Chain [[22,23],24,33]: 6*it(22)+6*it(23)+5*s(62)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+3*s(87)+2*s(90)+7 Such that:aux(38) =< V1 aux(39) =< V1+V aux(41) =< V1-Out aux(17) =< V1/2 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(21) =< V1/2-Out/2 aux(46) =< V/2 aux(107) =< Out aux(108) =< V1+V-Out aux(109) =< V s(87) =< aux(107) s(90) =< aux(108) it(23) =< aux(39) s(66) =< aux(39) it(23) =< aux(108) s(66) =< aux(108) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(108) it(22) =< aux(109) s(63) =< aux(109) aux(16) =< aux(46) aux(16) =< aux(109) aux(35) =< aux(109) aux(27) =< aux(39)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(17) s(73) =< aux(23)+aux(41) s(73) =< aux(23)+aux(38) s(72) =< aux(23)+aux(41) s(72) =< aux(23)+aux(38) it(23) =< aux(16)+aux(21) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(39) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(109) s(62) =< s(66) s(65) =< s(63)*aux(39) with precondition: [Out>=2,V1>=Out+1,V>=Out+1,V+V1>=3*Out+2] * Chain [[22,23],24,32]: 6*it(22)+6*it(23)+11*s(19)+3*s(63)+1*s(65)+3*s(68)+3*s(69)+2*s(70)+1*s(71)+8 Such that:aux(17) =< V1/2 aux(19) =< V1/2-V/2 aux(42) =< V1/2+V/2 aux(46) =< V/2 aux(111) =< V1 aux(112) =< V1+V aux(113) =< V s(19) =< aux(112) it(23) =< aux(112) it(22) =< aux(42) it(23) =< aux(42) it(22) =< aux(112) it(22) =< aux(113) s(63) =< aux(113) aux(16) =< aux(46) aux(16) =< aux(113) aux(35) =< aux(113) aux(27) =< aux(112)-1 aux(23) =< aux(16)*2 it(23) =< aux(16)+aux(19) it(23) =< aux(16)+aux(17) s(73) =< aux(23)+aux(111) s(72) =< aux(23)+aux(111) it(23) =< aux(16)+aux(111) s(73) =< it(23)*aux(35) s(69) =< it(23)*aux(112) s(72) =< it(23)*aux(27) s(68) =< s(73) s(70) =< s(72) s(71) =< s(69)*aux(113) s(65) =< s(63)*aux(112) with precondition: [Out=0,V1>=3,V>=3,V+V1>=8] * Chain [33]: 1 with precondition: [V1=0,V=Out,V>=0] * Chain [32]: 2*s(17)+1*s(19)+2 Such that:s(19) =< V aux(6) =< V1 s(17) =< aux(6) with precondition: [Out=0,V1>=0,V>=0] * Chain [31]: 1 with precondition: [V=0,V1=Out,V1>=1] * Chain [30]: 2 with precondition: [V=1,Out=0,V1>=1] * Chain [29,33]: 2*s(76)+7 Such that:s(74) =< V s(76) =< s(74) with precondition: [V1=1,Out=1,V>=2] * Chain [29,32]: 1*s(19)+2*s(76)+8 Such that:s(19) =< 1 s(74) =< V s(76) =< s(74) with precondition: [V1=1,Out=0,V>=2] * Chain [28,[26],32]: 18*it(26)+1*s(19)+6*s(28)+8 Such that:s(19) =< 1 aux(60) =< V it(26) =< aux(60) s(31) =< it(26)*aux(60) s(28) =< s(31) with precondition: [V1=1,Out=0,V>=3] * Chain [28,[26],30]: 16*it(26)+6*s(28)+8 Such that:aux(65) =< V it(26) =< aux(65) s(31) =< it(26)*aux(65) s(28) =< s(31) with precondition: [V1=1,Out=0,V>=3] * Chain [28,[26],27,33]: 18*it(26)+6*s(28)+13 Such that:aux(70) =< V it(26) =< aux(70) s(31) =< it(26)*aux(70) s(28) =< s(31) with precondition: [V1=1,Out=1,V>=3] * Chain [28,[26],27,32]: 18*it(26)+1*s(19)+6*s(28)+14 Such that:s(19) =< 1 aux(75) =< V it(26) =< aux(75) s(31) =< it(26)*aux(75) s(28) =< s(31) with precondition: [V1=1,Out=0,V>=3] * Chain [28,32]: 10*s(17)+1*s(19)+8 Such that:s(19) =< 1 aux(80) =< V s(17) =< aux(80) with precondition: [V1=1,Out=0,V>=2] * Chain [28,30]: 8*s(80)+8 Such that:aux(85) =< V s(80) =< aux(85) with precondition: [V1=1,Out=0,V>=2] * Chain [28,27,33]: 10*s(34)+13 Such that:aux(90) =< V s(34) =< aux(90) with precondition: [V1=1,Out=1,V>=2] * Chain [28,27,32]: 1*s(19)+10*s(34)+14 Such that:s(19) =< 1 aux(95) =< V s(34) =< aux(95) with precondition: [V1=1,Out=0,V>=2] * Chain [27,33]: 2*s(34)+7 Such that:s(32) =< V1 s(34) =< s(32) with precondition: [V=1,Out=1,V1>=1] * Chain [27,32]: 1*s(19)+2*s(34)+8 Such that:s(19) =< 1 s(32) =< V1 s(34) =< s(32) with precondition: [V=1,Out=0,V1>=1] * Chain [25,33]: 3*s(82)+2*s(85)+7 Such that:s(83) =< V1 aux(100) =< Out s(82) =< aux(100) s(85) =< s(83) with precondition: [V=Out,V>=2,V1>=V] * Chain [25,32]: 4*s(19)+2*s(85)+8 Such that:s(83) =< V1 aux(102) =< V s(19) =< aux(102) s(85) =< s(83) with precondition: [Out=0,V>=2,V1>=V] * Chain [24,33]: 3*s(87)+2*s(90)+7 Such that:s(88) =< V aux(107) =< Out s(87) =< aux(107) s(90) =< s(88) with precondition: [V1=Out,V1>=2,V>=V1+1] * Chain [24,32]: 4*s(19)+2*s(90)+8 Such that:s(88) =< V aux(110) =< V1 s(19) =< aux(110) s(90) =< s(88) with precondition: [Out=0,V1>=2,V>=V1+1] #### Cost of chains of start(V1,V,V11): * Chain [39]: 145*s(518)+21*s(520)+1*s(530)+10*s(539)+18*s(542)+212*s(543)+72*s(544)+90*s(545)+36*s(552)+36*s(553)+24*s(554)+12*s(555)+15*s(556)+24*s(558)+18*s(560)+9*s(563)+9*s(564)+6*s(565)+3*s(566)+14 Such that:s(531) =< 1 aux(148) =< V1 aux(149) =< V1+V aux(150) =< V1/2 aux(151) =< V1/2-V/2 aux(152) =< V1/2+V/2 aux(153) =< V aux(154) =< V/2 s(520) =< aux(148) s(518) =< aux(153) s(539) =< s(531) s(541) =< s(518)*aux(153) s(542) =< s(541) s(543) =< aux(149) s(544) =< aux(149) s(545) =< aux(152) s(544) =< aux(152) s(545) =< aux(149) s(545) =< aux(153) s(546) =< aux(154) s(546) =< aux(153) s(547) =< aux(153) s(548) =< aux(149)-1 s(549) =< s(546)*2 s(544) =< s(546)+aux(151) s(544) =< s(546)+aux(150) s(550) =< s(549)+aux(148) s(551) =< s(549)+aux(148) s(550) =< s(544)*s(547) s(552) =< s(544)*aux(149) s(551) =< s(544)*s(548) s(553) =< s(550) s(554) =< s(551) s(555) =< s(552)*aux(153) s(556) =< s(518)*aux(149) s(557) =< s(543)*aux(149) s(558) =< s(557) s(560) =< aux(149) s(560) =< aux(152) s(560) =< s(546)+aux(151) s(560) =< s(546)+aux(150) s(561) =< s(549)+aux(148) s(562) =< s(549)+aux(148) s(560) =< s(546)+aux(148) s(561) =< s(560)*s(547) s(563) =< s(560)*aux(149) s(562) =< s(560)*s(548) s(564) =< s(561) s(565) =< s(562) s(566) =< s(563)*aux(153) s(530) =< s(520)*aux(153) with precondition: [V1>=0,V>=0] * Chain [38]: 267*s(644)+458*s(645)+155*s(658)+60*s(661)+60*s(663)+60*s(664)+30*s(671)+30*s(672)+20*s(673)+10*s(674)+10*s(675)+18*s(701)+60*s(703)+60*s(704)+30*s(711)+30*s(712)+20*s(713)+10*s(714)+10*s(715)+42*s(717)+5*s(749)+214*s(762)+90*s(763)+90*s(764)+45*s(771)+45*s(772)+30*s(773)+15*s(774)+15*s(775)+24*s(777)+1*s(791)+1*s(904)+18 Such that:s(697) =< 1/2 s(654) =< -V/2 aux(177) =< 1 aux(178) =< -V+V11/2 aux(179) =< V aux(180) =< V+V11 aux(181) =< V/2 aux(182) =< V11 s(658) =< aux(177) s(645) =< aux(179) s(660) =< s(645)*aux(179) s(661) =< s(660) s(663) =< aux(179) s(664) =< aux(181) s(663) =< aux(181) s(664) =< aux(179) s(665) =< aux(181) s(665) =< aux(179) s(666) =< aux(179) s(667) =< aux(179)-1 s(668) =< s(665)*2 s(663) =< s(665)+s(654) s(663) =< s(665) s(669) =< s(668) s(670) =< s(668) s(669) =< s(663)*s(666) s(671) =< s(663)*aux(179) s(670) =< s(663)*s(667) s(672) =< s(669) s(673) =< s(670) s(674) =< s(671)*aux(179) s(675) =< s(645)*aux(179) s(644) =< aux(182) s(716) =< s(644)*aux(182) s(717) =< s(716) s(762) =< aux(180) s(763) =< aux(180) s(764) =< aux(180) s(764) =< aux(179) s(767) =< aux(180)-1 s(763) =< s(665)+aux(178) s(763) =< s(665)+aux(182) s(769) =< s(668)+aux(182) s(770) =< s(668)+aux(182) s(769) =< s(763)*s(666) s(771) =< s(763)*aux(180) s(770) =< s(763)*s(767) s(772) =< s(769) s(773) =< s(770) s(774) =< s(771)*aux(179) s(775) =< s(645)*aux(180) s(776) =< s(762)*aux(180) s(777) =< s(776) s(749) =< s(644)*aux(179) s(791) =< s(658)*aux(179) s(700) =< s(658)*aux(177) s(701) =< s(700) s(703) =< aux(182) s(704) =< aux(182) s(704) =< aux(177) s(705) =< s(697) s(705) =< aux(177) s(706) =< aux(177) s(707) =< aux(182)-1 s(708) =< s(705)*2 s(703) =< s(705)+aux(182) s(709) =< s(708)+aux(182) s(710) =< s(708)+aux(182) s(709) =< s(703)*s(706) s(711) =< s(703)*aux(182) s(710) =< s(703)*s(707) s(712) =< s(709) s(713) =< s(710) s(714) =< s(711)*aux(177) s(715) =< s(658)*aux(182) s(904) =< s(645)*aux(182) with precondition: [V1=1,V>=1,V11>=0] * Chain [37]: 38*s(907)+6*s(912)+13 Such that:aux(184) =< V s(907) =< aux(184) s(911) =< s(907)*aux(184) s(912) =< s(911) with precondition: [V1=1,V>=2] * Chain [36]: 263*s(915)+451*s(916)+155*s(929)+60*s(932)+60*s(934)+60*s(935)+30*s(942)+30*s(943)+20*s(944)+10*s(945)+10*s(946)+18*s(972)+60*s(974)+60*s(975)+30*s(982)+30*s(983)+20*s(984)+10*s(985)+10*s(986)+42*s(988)+5*s(1020)+214*s(1033)+90*s(1034)+90*s(1035)+45*s(1042)+45*s(1043)+30*s(1044)+15*s(1045)+15*s(1046)+24*s(1048)+1*s(1062)+18 Such that:s(968) =< 1/2 s(925) =< -V11/2 aux(206) =< 1 aux(207) =< V aux(208) =< V+V11 aux(209) =< V/2-V11 aux(210) =< V11 aux(211) =< V11/2 s(929) =< aux(206) s(916) =< aux(210) s(931) =< s(916)*aux(210) s(932) =< s(931) s(934) =< aux(210) s(935) =< aux(211) s(934) =< aux(211) s(935) =< aux(210) s(936) =< aux(211) s(936) =< aux(210) s(937) =< aux(210) s(938) =< aux(210)-1 s(939) =< s(936)*2 s(934) =< s(936)+s(925) s(934) =< s(936) s(940) =< s(939) s(941) =< s(939) s(940) =< s(934)*s(937) s(942) =< s(934)*aux(210) s(941) =< s(934)*s(938) s(943) =< s(940) s(944) =< s(941) s(945) =< s(942)*aux(210) s(946) =< s(916)*aux(210) s(915) =< aux(207) s(987) =< s(915)*aux(207) s(988) =< s(987) s(1033) =< aux(208) s(1034) =< aux(208) s(1035) =< aux(208) s(1035) =< aux(210) s(1038) =< aux(208)-1 s(1034) =< s(936)+aux(209) s(1034) =< s(936)+aux(207) s(1040) =< s(939)+aux(207) s(1041) =< s(939)+aux(207) s(1040) =< s(1034)*s(937) s(1042) =< s(1034)*aux(208) s(1041) =< s(1034)*s(1038) s(1043) =< s(1040) s(1044) =< s(1041) s(1045) =< s(1042)*aux(210) s(1046) =< s(916)*aux(208) s(1047) =< s(1033)*aux(208) s(1048) =< s(1047) s(1020) =< s(915)*aux(210) s(1062) =< s(929)*aux(210) s(971) =< s(929)*aux(206) s(972) =< s(971) s(974) =< aux(207) s(975) =< aux(207) s(975) =< aux(206) s(976) =< s(968) s(976) =< aux(206) s(977) =< aux(206) s(978) =< aux(207)-1 s(979) =< s(976)*2 s(974) =< s(976)+aux(207) s(980) =< s(979)+aux(207) s(981) =< s(979)+aux(207) s(980) =< s(974)*s(977) s(982) =< s(974)*aux(207) s(981) =< s(974)*s(978) s(983) =< s(980) s(984) =< s(981) s(985) =< s(982)*aux(206) s(986) =< s(929)*aux(207) with precondition: [V1=2,V>=1,V11>=0] * Chain [35]: 8*s(1168)+3 Such that:aux(212) =< V1 s(1168) =< aux(212) with precondition: [V=0,V1>=1] * Chain [34]: 3*s(1172)+42*s(1173)+24*s(1175)+8 Such that:s(1170) =< 1 aux(213) =< V1 s(1172) =< s(1170) s(1173) =< aux(213) s(1174) =< s(1173)*aux(213) s(1175) =< s(1174) with precondition: [V=1,V1>=1] Closed-form bounds of start(V1,V,V11): ------------------------------------- * Chain [39] with precondition: [V1>=0,V>=0] - Upper bound: 96*V1+24+V*V1+145*V+18*V*V+(V1+V)*(15*V)+(V1+V)*((V1+V)*(15*V))+(302*V1+302*V)+(69*V1+69*V)*(V1+V)+(45*V1+45*V)+75*V - Complexity: n^3 * Chain [38] with precondition: [V1=1,V>=1,V11>=0] - Upper bound: 519*V+301+100*V*V+10*V*V*V+6*V*V11+(V+V11)*(15*V)+(V+V11)*((V+V11)*(15*V))+462*V11+82*V11*V11+(394*V+394*V11)+(69*V+69*V11)*(V+V11)+155*V - Complexity: n^3 * Chain [37] with precondition: [V1=1,V>=2] - Upper bound: 38*V+13+6*V*V - Complexity: n^2 * Chain [36] with precondition: [V1=2,V>=1,V11>=0] - Upper bound: 458*V+301+82*V*V+5*V*V11+512*V11+100*V11*V11+10*V11*V11*V11+(V+V11)*(15*V11)+(V+V11)*((V+V11)*(15*V11))+(394*V+394*V11)+(69*V+69*V11)*(V+V11)+155*V11 - Complexity: n^3 * Chain [35] with precondition: [V=0,V1>=1] - Upper bound: 8*V1+3 - Complexity: n * Chain [34] with precondition: [V=1,V1>=1] - Upper bound: 42*V1+11+24*V1*V1 - Complexity: n^2 ### Maximum cost of start(V1,V,V11): max([34*V1+8+24*V1*V1+8*V1,107*V+11+12*V*V+max([96*V1+V*V1+(V1+V)*(15*V)+(V1+V)*((V1+V)*(15*V))+(302*V1+302*V)+(69*V1+69*V)*(V1+V)+(45*V1+45*V)+75*V,313*V+277+64*V*V+5*V*nat(V11)+nat(V11)*462+nat(V11)*82*nat(V11)+nat(V+V11)*394+nat(V+V11)*69*nat(V+V11)+max([nat(V11)*18*nat(V11)+nat(V11)*50+nat(V11)*10*nat(V11)*nat(V11)+nat(V11)*15*nat(V+V11)+nat(V11)*15*nat(V+V11)*nat(V+V11)+nat(V11/2)*310,18*V*V+61*V+10*V*V*V+nat(V11)*V+15*V*nat(V+V11)+15*V*nat(V+V11)*nat(V+V11)+155*V])])+(38*V+10+6*V*V)])+3 Asymptotic class: n^3 * Total analysis performed in 2031 ms. ---------------------------------------- (10) BOUNDS(1, n^3) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(x), s(y)) ->^+ le(x, y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, y) -> true le(s(x), 0) -> false le(s(x), s(y)) -> le(x, y) minus(0, y) -> 0 minus(s(x), y) -> if_minus(le(s(x), y), s(x), y) if_minus(true, s(x), y) -> 0 if_minus(false, s(x), y) -> s(minus(x, y)) gcd(0, y) -> y gcd(s(x), 0) -> s(x) gcd(s(x), s(y)) -> if_gcd(le(y, x), s(x), s(y)) if_gcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y)) if_gcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x)) S is empty. Rewrite Strategy: INNERMOST