WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 10 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 27 ms] (8) CdtProblem (9) CdtKnowledgeProof [FINISHED, 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: quot(0, s(z0), s(z1)) -> 0 quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0, s(z1)) -> s(quot(z0, s(z1), s(z1))) Tuples: QUOT(0, s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) S tuples: QUOT(0, s(z0), s(z1)) -> c QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) K tuples:none Defined Rule Symbols: quot_3 Defined Pair Symbols: QUOT_3 Compound Symbols: c, c1_1, c2_1 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing nodes: QUOT(0, s(z0), s(z1)) -> c ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: quot(0, s(z0), s(z1)) -> 0 quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0, s(z1)) -> s(quot(z0, s(z1), s(z1))) Tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) S tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) K tuples:none Defined Rule Symbols: quot_3 Defined Pair Symbols: QUOT_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: quot(0, s(z0), s(z1)) -> 0 quot(s(z0), s(z1), z2) -> quot(z0, z1, z2) quot(z0, 0, s(z1)) -> s(quot(z0, s(z1), s(z1))) ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) S tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: QUOT_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) We considered the (Usable) Rules:none And the Tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(QUOT(x_1, x_2, x_3)) = x_1 POL(c1(x_1)) = x_1 POL(c2(x_1)) = x_1 POL(s(x_1)) = [1] + x_1 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) S tuples: QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) K tuples: QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) Defined Rule Symbols:none Defined Pair Symbols: QUOT_3 Compound Symbols: c1_1, c2_1 ---------------------------------------- (9) CdtKnowledgeProof (FINISHED) The following tuples could be moved from S to K by knowledge propagation: QUOT(z0, 0, s(z1)) -> c2(QUOT(z0, s(z1), s(z1))) QUOT(s(z0), s(z1), z2) -> c1(QUOT(z0, z1, z2)) Now S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence quot(s(x), s(y), z) ->^+ quot(x, y, z) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [x / s(x), y / s(y)]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: quot(0, s(y), s(z)) -> 0 quot(s(x), s(y), z) -> quot(x, y, z) quot(x, 0, s(z)) -> s(quot(x, s(z), s(z))) S is empty. Rewrite Strategy: INNERMOST