WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 163 ms] (2) CpxRelTRS (3) CpxTrsToCdtProof [UPPER BOUND(ID), 3 ms] (4) CdtProblem (5) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (6) CdtProblem (7) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CdtProblem (9) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 3 ms] (10) CdtProblem (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 0 ms] (12) CdtProblem (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (14) BOUNDS(1, 1) (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRelTRS (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (18) typed CpxTrs (19) OrderProof [LOWER BOUND(ID), 0 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 284 ms] (22) typed CpxTrs (23) RewriteLemmaProof [LOWER BOUND(ID), 27 ms] (24) proven lower bound (25) LowerBoundPropagationProof [FINISHED, 0 ms] (26) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: !EQ(S(z0), S(z1)) -> !EQ(z0, z1) !EQ(0, S(z0)) -> False !EQ(S(z0), 0) -> False !EQ(0, 0) -> True member[Ite][True][Ite](False, z0, Cons(z1, z2)) -> member(z0, z2) member[Ite][True][Ite](True, z0, z1) -> True member(z0, Cons(z1, z2)) -> member[Ite][True][Ite](!EQ(z0, z1), z0, Cons(z1, z2)) member(z0, Nil) -> False notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False goal(z0, z1) -> member(z0, z1) Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) !EQ'(0, S(z0)) -> c1 !EQ'(S(z0), 0) -> c2 !EQ'(0, 0) -> c3 MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER[ITE][TRUE][ITE](True, z0, z1) -> c5 MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 NOTEMPTY(Cons(z0, z1)) -> c8 NOTEMPTY(Nil) -> c9 GOAL(z0, z1) -> c10(MEMBER(z0, z1)) S tuples: MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 NOTEMPTY(Cons(z0, z1)) -> c8 NOTEMPTY(Nil) -> c9 GOAL(z0, z1) -> c10(MEMBER(z0, z1)) K tuples:none Defined Rule Symbols: member_2, notEmpty_1, goal_2, !EQ_2, member[Ite][True][Ite]_3 Defined Pair Symbols: !EQ'_2, MEMBER[ITE][TRUE][ITE]_3, MEMBER_2, NOTEMPTY_1, GOAL_2 Compound Symbols: c_1, c1, c2, c3, c4_1, c5, c6_2, c7, c8, c9, c10_1 ---------------------------------------- (5) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: GOAL(z0, z1) -> c10(MEMBER(z0, z1)) Removed 6 trailing nodes: NOTEMPTY(Cons(z0, z1)) -> c8 !EQ'(S(z0), 0) -> c2 NOTEMPTY(Nil) -> c9 !EQ'(0, 0) -> c3 !EQ'(0, S(z0)) -> c1 MEMBER[ITE][TRUE][ITE](True, z0, z1) -> c5 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules: !EQ(S(z0), S(z1)) -> !EQ(z0, z1) !EQ(0, S(z0)) -> False !EQ(S(z0), 0) -> False !EQ(0, 0) -> True member[Ite][True][Ite](False, z0, Cons(z1, z2)) -> member(z0, z2) member[Ite][True][Ite](True, z0, z1) -> True member(z0, Cons(z1, z2)) -> member[Ite][True][Ite](!EQ(z0, z1), z0, Cons(z1, z2)) member(z0, Nil) -> False notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False goal(z0, z1) -> member(z0, z1) Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 S tuples: MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 K tuples:none Defined Rule Symbols: member_2, notEmpty_1, goal_2, !EQ_2, member[Ite][True][Ite]_3 Defined Pair Symbols: !EQ'_2, MEMBER[ITE][TRUE][ITE]_3, MEMBER_2 Compound Symbols: c_1, c4_1, c6_2, c7 ---------------------------------------- (7) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: member[Ite][True][Ite](False, z0, Cons(z1, z2)) -> member(z0, z2) member[Ite][True][Ite](True, z0, z1) -> True member(z0, Cons(z1, z2)) -> member[Ite][True][Ite](!EQ(z0, z1), z0, Cons(z1, z2)) member(z0, Nil) -> False notEmpty(Cons(z0, z1)) -> True notEmpty(Nil) -> False goal(z0, z1) -> member(z0, z1) ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules: !EQ(S(z0), S(z1)) -> !EQ(z0, z1) !EQ(0, S(z0)) -> False !EQ(S(z0), 0) -> False !EQ(0, 0) -> True Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 S tuples: MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 K tuples:none Defined Rule Symbols: !EQ_2 Defined Pair Symbols: !EQ'_2, MEMBER[ITE][TRUE][ITE]_3, MEMBER_2 Compound Symbols: c_1, c4_1, c6_2, c7 ---------------------------------------- (9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MEMBER(z0, Nil) -> c7 We considered the (Usable) Rules:none And the Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 The order we found is given by the following interpretation: Polynomial interpretation : POL(!EQ(x_1, x_2)) = [3] POL(!EQ'(x_1, x_2)) = 0 POL(0) = [3] POL(Cons(x_1, x_2)) = x_2 POL(False) = [3] POL(MEMBER(x_1, x_2)) = [3]x_1 + x_2 POL(MEMBER[ITE][TRUE][ITE](x_1, x_2, x_3)) = [3]x_2 + x_3 POL(Nil) = [3] POL(S(x_1)) = [3] + x_1 POL(True) = [3] POL(c(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: !EQ(S(z0), S(z1)) -> !EQ(z0, z1) !EQ(0, S(z0)) -> False !EQ(S(z0), 0) -> False !EQ(0, 0) -> True Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 S tuples: MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) K tuples: MEMBER(z0, Nil) -> c7 Defined Rule Symbols: !EQ_2 Defined Pair Symbols: !EQ'_2, MEMBER[ITE][TRUE][ITE]_3, MEMBER_2 Compound Symbols: c_1, c4_1, c6_2, c7 ---------------------------------------- (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) We considered the (Usable) Rules:none And the Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 The order we found is given by the following interpretation: Polynomial interpretation : POL(!EQ(x_1, x_2)) = [1] + x_1 + x_2 POL(!EQ'(x_1, x_2)) = 0 POL(0) = [1] POL(Cons(x_1, x_2)) = [1] + x_1 + x_2 POL(False) = [1] POL(MEMBER(x_1, x_2)) = [1] + x_1 + x_2 POL(MEMBER[ITE][TRUE][ITE](x_1, x_2, x_3)) = x_2 + x_3 POL(Nil) = 0 POL(S(x_1)) = [1] + x_1 POL(True) = [1] POL(c(x_1)) = x_1 POL(c4(x_1)) = x_1 POL(c6(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: !EQ(S(z0), S(z1)) -> !EQ(z0, z1) !EQ(0, S(z0)) -> False !EQ(S(z0), 0) -> False !EQ(0, 0) -> True Tuples: !EQ'(S(z0), S(z1)) -> c(!EQ'(z0, z1)) MEMBER[ITE][TRUE][ITE](False, z0, Cons(z1, z2)) -> c4(MEMBER(z0, z2)) MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) MEMBER(z0, Nil) -> c7 S tuples:none K tuples: MEMBER(z0, Nil) -> c7 MEMBER(z0, Cons(z1, z2)) -> c6(MEMBER[ITE][TRUE][ITE](!EQ(z0, z1), z0, Cons(z1, z2)), !EQ'(z0, z1)) Defined Rule Symbols: !EQ_2 Defined Pair Symbols: !EQ'_2, MEMBER[ITE][TRUE][ITE]_3, MEMBER_2 Compound Symbols: c_1, c4_1, c6_2, c7 ---------------------------------------- (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (14) BOUNDS(1, 1) ---------------------------------------- (15) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (16) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (18) Obligation: Innermost TRS: Rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Types: member :: S:0' -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: S:0' -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_S:0'2_0 :: S:0' hole_Cons:Nil3_0 :: Cons:Nil gen_S:0'4_0 :: Nat -> S:0' gen_Cons:Nil5_0 :: Nat -> Cons:Nil ---------------------------------------- (19) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: member, !EQ They will be analysed ascendingly in the following order: !EQ < member ---------------------------------------- (20) Obligation: Innermost TRS: Rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Types: member :: S:0' -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: S:0' -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_S:0'2_0 :: S:0' hole_Cons:Nil3_0 :: Cons:Nil gen_S:0'4_0 :: Nat -> S:0' gen_Cons:Nil5_0 :: Nat -> Cons:Nil Generator Equations: gen_S:0'4_0(0) <=> 0' gen_S:0'4_0(+(x, 1)) <=> S(gen_S:0'4_0(x)) gen_Cons:Nil5_0(0) <=> Nil gen_Cons:Nil5_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil5_0(x)) The following defined symbols remain to be analysed: !EQ, member They will be analysed ascendingly in the following order: !EQ < member ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: !EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) -> False, rt in Omega(0) Induction Base: !EQ(gen_S:0'4_0(0), gen_S:0'4_0(+(1, 0))) ->_R^Omega(0) False Induction Step: !EQ(gen_S:0'4_0(+(n7_0, 1)), gen_S:0'4_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) !EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) ->_IH False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) Obligation: Innermost TRS: Rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Types: member :: S:0' -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: S:0' -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_S:0'2_0 :: S:0' hole_Cons:Nil3_0 :: Cons:Nil gen_S:0'4_0 :: Nat -> S:0' gen_Cons:Nil5_0 :: Nat -> Cons:Nil Lemmas: !EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_S:0'4_0(0) <=> 0' gen_S:0'4_0(+(x, 1)) <=> S(gen_S:0'4_0(x)) gen_Cons:Nil5_0(0) <=> Nil gen_Cons:Nil5_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil5_0(x)) The following defined symbols remain to be analysed: member ---------------------------------------- (23) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n260_0)) -> False, rt in Omega(1 + n260_0) Induction Base: member(gen_S:0'4_0(1), gen_Cons:Nil5_0(0)) ->_R^Omega(1) False Induction Step: member(gen_S:0'4_0(1), gen_Cons:Nil5_0(+(n260_0, 1))) ->_R^Omega(1) member[Ite][True][Ite](!EQ(gen_S:0'4_0(1), 0'), gen_S:0'4_0(1), Cons(0', gen_Cons:Nil5_0(n260_0))) ->_R^Omega(0) member[Ite][True][Ite](False, gen_S:0'4_0(1), Cons(0', gen_Cons:Nil5_0(n260_0))) ->_R^Omega(0) member(gen_S:0'4_0(1), gen_Cons:Nil5_0(n260_0)) ->_IH False We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (24) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(x, xs) -> member(x, xs) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) member[Ite][True][Ite](True, x, xs) -> True Types: member :: S:0' -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: S:0' -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_S:0'2_0 :: S:0' hole_Cons:Nil3_0 :: Cons:Nil gen_S:0'4_0 :: Nat -> S:0' gen_Cons:Nil5_0 :: Nat -> Cons:Nil Lemmas: !EQ(gen_S:0'4_0(n7_0), gen_S:0'4_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_S:0'4_0(0) <=> 0' gen_S:0'4_0(+(x, 1)) <=> S(gen_S:0'4_0(x)) gen_Cons:Nil5_0(0) <=> Nil gen_Cons:Nil5_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil5_0(x)) The following defined symbols remain to be analysed: member ---------------------------------------- (25) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (26) BOUNDS(n^1, INF)