WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). (0) CpxTRS (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (2) CpxTRS (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] (4) BOUNDS(1, n^1) (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTRS (7) SlicingProof [LOWER BOUND(ID), 0 ms] (8) CpxTRS (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) typed CpxTrs (11) OrderProof [LOWER BOUND(ID), 0 ms] (12) typed CpxTrs (13) RewriteLemmaProof [LOWER BOUND(ID), 139 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) typed CpxTrs ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: odd(Cons(x, xs)) -> even(xs) odd(Nil) -> False even(Cons(x, xs)) -> odd(xs) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: odd(Cons(x, xs)) -> even(xs) odd(Nil) -> False even(Cons(x, xs)) -> odd(xs) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (3) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4] transitions: Cons0(0, 0) -> 0 Nil0() -> 0 False0() -> 0 True0() -> 0 odd0(0) -> 1 even0(0) -> 2 notEmpty0(0) -> 3 evenodd0(0) -> 4 even1(0) -> 1 False1() -> 1 odd1(0) -> 2 True1() -> 3 False1() -> 3 True1() -> 2 even1(0) -> 4 even1(0) -> 2 False1() -> 2 odd1(0) -> 1 odd1(0) -> 4 True1() -> 1 True1() -> 4 False1() -> 4 ---------------------------------------- (4) BOUNDS(1, n^1) ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: odd(Cons(x, xs)) -> even(xs) odd(Nil) -> False even(Cons(x, xs)) -> odd(xs) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (7) SlicingProof (LOWER BOUND(ID)) Sliced the following arguments: Cons/0 ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: odd(Cons(xs)) -> even(xs) odd(Nil) -> False even(Cons(xs)) -> odd(xs) notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Innermost TRS: Rules: odd(Cons(xs)) -> even(xs) odd(Nil) -> False even(Cons(xs)) -> odd(xs) notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) Types: odd :: Cons:Nil -> False:True Cons :: Cons:Nil -> Cons:Nil even :: Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True evenodd :: Cons:Nil -> False:True hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil ---------------------------------------- (11) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: odd, even They will be analysed ascendingly in the following order: odd = even ---------------------------------------- (12) Obligation: Innermost TRS: Rules: odd(Cons(xs)) -> even(xs) odd(Nil) -> False even(Cons(xs)) -> odd(xs) notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) Types: odd :: Cons:Nil -> False:True Cons :: Cons:Nil -> Cons:Nil even :: Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True evenodd :: Cons:Nil -> False:True hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: even, odd They will be analysed ascendingly in the following order: odd = even ---------------------------------------- (13) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: even(gen_Cons:Nil3_0(*(2, n5_0))) -> True, rt in Omega(1 + n5_0) Induction Base: even(gen_Cons:Nil3_0(*(2, 0))) ->_R^Omega(1) True Induction Step: even(gen_Cons:Nil3_0(*(2, +(n5_0, 1)))) ->_R^Omega(1) odd(gen_Cons:Nil3_0(+(1, *(2, n5_0)))) ->_R^Omega(1) even(gen_Cons:Nil3_0(*(2, n5_0))) ->_IH True We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: odd(Cons(xs)) -> even(xs) odd(Nil) -> False even(Cons(xs)) -> odd(xs) notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) Types: odd :: Cons:Nil -> False:True Cons :: Cons:Nil -> Cons:Nil even :: Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True evenodd :: Cons:Nil -> False:True hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: even, odd They will be analysed ascendingly in the following order: odd = even ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Innermost TRS: Rules: odd(Cons(xs)) -> even(xs) odd(Nil) -> False even(Cons(xs)) -> odd(xs) notEmpty(Cons(xs)) -> True notEmpty(Nil) -> False even(Nil) -> True evenodd(x) -> even(x) Types: odd :: Cons:Nil -> False:True Cons :: Cons:Nil -> Cons:Nil even :: Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True notEmpty :: Cons:Nil -> False:True True :: False:True evenodd :: Cons:Nil -> False:True hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil gen_Cons:Nil3_0 :: Nat -> Cons:Nil Lemmas: even(gen_Cons:Nil3_0(*(2, n5_0))) -> True, rt in Omega(1 + n5_0) Generator Equations: gen_Cons:Nil3_0(0) <=> Nil gen_Cons:Nil3_0(+(x, 1)) <=> Cons(gen_Cons:Nil3_0(x)) The following defined symbols remain to be analysed: odd They will be analysed ascendingly in the following order: odd = even