WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 195 ms] (2) CpxRelTRS (3) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (4) TRS for Loop Detection (5) DecreasingLoopProof [LOWER BOUND(ID), 37 ms] (6) BEST (7) proven lower bound (8) LowerBoundPropagationProof [FINISHED, 0 ms] (9) BOUNDS(n^1, INF) (10) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (4) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (5) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence appmin(0, Cons(x, xs), xs') ->^+ appmin(0, xs, xs') gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [xs / Cons(x, xs)]. The result substitution is [ ]. ---------------------------------------- (6) Complex Obligation (BEST) ---------------------------------------- (7) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST ---------------------------------------- (8) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (9) BOUNDS(n^1, INF) ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: remove(x', Cons(x, xs)) -> remove[Ite][True][Ite](!EQ(x', x), x', Cons(x, xs)) remove(x, Nil) -> Nil minsort(Cons(x, xs)) -> appmin(x, xs, Cons(x, xs)) minsort(Nil) -> Nil appmin(min, Cons(x, xs), xs') -> appmin[Ite][True][Ite](<(x, min), min, Cons(x, xs), xs') appmin(min, Nil, xs) -> Cons(min, minsort(remove(min, xs))) notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs) -> minsort(xs) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True <(S(x), S(y)) -> <(x, y) <(0, S(y)) -> True <(x, 0) -> False remove[Ite][True][Ite](False, x', Cons(x, xs)) -> Cons(x, remove(x', xs)) appmin[Ite][True][Ite](True, min, Cons(x, xs), xs') -> appmin(x, xs, xs') remove[Ite][True][Ite](True, x', Cons(x, xs)) -> xs appmin[Ite][True][Ite](False, min, Cons(x, xs), xs') -> appmin(min, xs, xs') Rewrite Strategy: INNERMOST