WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxRelTRS (1) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 156 ms] (2) CpxRelTRS (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxWeightedTrs (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxTypedWeightedTrs (7) CompletionProof [UPPER BOUND(ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedCompleteTrs (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (12) CpxRNTS (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxRNTS (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 116 ms] (20) CpxRNTS (21) IntTrsBoundProof [UPPER BOUND(ID), 44 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 351 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 15 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 1068 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 305 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 927 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 382 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 158 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) FinalProof [FINISHED, 0 ms] (48) BOUNDS(1, n^2) (49) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (50) CpxRelTRS (51) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (52) typed CpxTrs (53) OrderProof [LOWER BOUND(ID), 0 ms] (54) typed CpxTrs (55) RewriteLemmaProof [LOWER BOUND(ID), 288 ms] (56) typed CpxTrs (57) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (58) BEST (59) proven lower bound (60) LowerBoundPropagationProof [FINISHED, 0 ms] (61) BOUNDS(n^1, INF) (62) typed CpxTrs (63) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (64) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (1) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0, S(y)) -> False !EQ(S(x), 0) -> False !EQ(0, 0) -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (4) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) [1] overlap(Nil, ys) -> False [1] member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) [1] member(x, Nil) -> False [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs, ys) -> overlap(xs, ys) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) [0] member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) [0] overlap[Ite][True][Ite](True, xs, ys) -> True [0] member[Ite][True][Ite](True, x, xs) -> True [0] Rewrite Strategy: INNERMOST ---------------------------------------- (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) [1] overlap(Nil, ys) -> False [1] member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) [1] member(x, Nil) -> False [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs, ys) -> overlap(xs, ys) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) [0] member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) [0] overlap[Ite][True][Ite](True, xs, ys) -> True [0] member[Ite][True][Ite](True, x, xs) -> True [0] The TRS has the following type information: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0 -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0 -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0 -> Cons:Nil -> False:True !EQ :: S:0 -> S:0 -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0 -> S:0 0 :: S:0 Rewrite Strategy: INNERMOST ---------------------------------------- (7) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: overlap_2 notEmpty_1 goal_2 (c) The following functions are completely defined: member_2 !EQ_2 overlap[Ite][True][Ite]_3 member[Ite][True][Ite]_3 Due to the following rules being added: !EQ(v0, v1) -> null_!EQ [0] overlap[Ite][True][Ite](v0, v1, v2) -> null_overlap[Ite][True][Ite] [0] member[Ite][True][Ite](v0, v1, v2) -> null_member[Ite][True][Ite] [0] And the following fresh constants: null_!EQ, null_overlap[Ite][True][Ite], null_member[Ite][True][Ite] ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) [1] overlap(Nil, ys) -> False [1] member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) [1] member(x, Nil) -> False [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs, ys) -> overlap(xs, ys) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) [0] member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) [0] overlap[Ite][True][Ite](True, xs, ys) -> True [0] member[Ite][True][Ite](True, x, xs) -> True [0] !EQ(v0, v1) -> null_!EQ [0] overlap[Ite][True][Ite](v0, v1, v2) -> null_overlap[Ite][True][Ite] [0] member[Ite][True][Ite](v0, v1, v2) -> null_member[Ite][True][Ite] [0] The TRS has the following type information: overlap :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] member :: S:0 -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Nil :: Cons:Nil False :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] member[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] -> S:0 -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] !EQ :: S:0 -> S:0 -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] notEmpty :: Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] True :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] goal :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] S :: S:0 -> S:0 0 :: S:0 null_!EQ :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] null_overlap[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] null_member[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (9) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: overlap(Cons(x, xs), Cons(x1, xs')) -> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, Cons(x1, xs')), Cons(x, xs), Cons(x1, xs')) [2] overlap(Cons(x, xs), Nil) -> overlap[Ite][True][Ite](False, Cons(x, xs), Nil) [2] overlap(Nil, ys) -> False [1] member(S(y'), Cons(S(x''), xs)) -> member[Ite][True][Ite](!EQ(x'', y'), S(y'), Cons(S(x''), xs)) [1] member(S(y''), Cons(0, xs)) -> member[Ite][True][Ite](False, S(y''), Cons(0, xs)) [1] member(0, Cons(S(x2), xs)) -> member[Ite][True][Ite](False, 0, Cons(S(x2), xs)) [1] member(0, Cons(0, xs)) -> member[Ite][True][Ite](True, 0, Cons(0, xs)) [1] member(x', Cons(x, xs)) -> member[Ite][True][Ite](null_!EQ, x', Cons(x, xs)) [1] member(x, Nil) -> False [1] notEmpty(Cons(x, xs)) -> True [1] notEmpty(Nil) -> False [1] goal(xs, ys) -> overlap(xs, ys) [1] !EQ(S(x), S(y)) -> !EQ(x, y) [0] !EQ(0, S(y)) -> False [0] !EQ(S(x), 0) -> False [0] !EQ(0, 0) -> True [0] overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) [0] member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) [0] overlap[Ite][True][Ite](True, xs, ys) -> True [0] member[Ite][True][Ite](True, x, xs) -> True [0] !EQ(v0, v1) -> null_!EQ [0] overlap[Ite][True][Ite](v0, v1, v2) -> null_overlap[Ite][True][Ite] [0] member[Ite][True][Ite](v0, v1, v2) -> null_member[Ite][True][Ite] [0] The TRS has the following type information: overlap :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Cons :: S:0 -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] -> Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] member :: S:0 -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Nil :: Cons:Nil False :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] member[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] -> S:0 -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] !EQ :: S:0 -> S:0 -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] notEmpty :: Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] True :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] goal :: Cons:Nil -> Cons:Nil -> False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] S :: S:0 -> S:0 0 :: S:0 null_!EQ :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] null_overlap[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] null_member[Ite][True][Ite] :: False:True:null_!EQ:null_overlap[Ite][True][Ite]:null_member[Ite][True][Ite] Rewrite Strategy: INNERMOST ---------------------------------------- (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: Nil => 0 False => 1 True => 2 0 => 0 null_!EQ => 0 null_overlap[Ite][True][Ite] => 0 null_member[Ite][True][Ite] => 0 ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' = 1 + y, y >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: x >= 0, z = 1 + x, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 !EQ(z, z') -{ 0 }-> !EQ(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x goal(z, z') -{ 1 }-> overlap(xs, ys) :|: xs >= 0, z = xs, z' = ys, ys >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + xs) :|: xs >= 0, z' = 1 + 0 + xs, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + y'', 1 + 0 + xs) :|: xs >= 0, z = 1 + y'', z' = 1 + 0 + xs, y'' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, x', 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, x' >= 0, x >= 0, z = x' member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', y'), 1 + y', 1 + (1 + x'') + xs) :|: xs >= 0, z = 1 + y', y' >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: x >= 0, z = x, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(x', xs) :|: z' = x', xs >= 0, z = 1, x' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, xs >= 0, z' = x, x >= 0, z'' = xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' = ys, ys >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, ys) :|: xs >= 0, z' = 1 + x + xs, z = 1, ys >= 0, x >= 0, z'' = ys overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, xs >= 0, ys >= 0, z'' = ys, z' = xs overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ---------------------------------------- (13) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ---------------------------------------- (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { notEmpty } { !EQ } { member, member[Ite][True][Ite] } { overlap[Ite][True][Ite], overlap } { goal } ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {notEmpty}, {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} ---------------------------------------- (17) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {notEmpty}, {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: notEmpty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {notEmpty}, {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: ?, size: O(1) [2] ---------------------------------------- (21) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: notEmpty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: !EQ after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {!EQ}, {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: ?, size: O(1) [2] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: !EQ after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 !EQ(z, z') -{ 0 }-> !EQ(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](!EQ(x'', z - 1), 1 + (z - 1), 1 + (1 + x'') + xs) :|: xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](!EQ(x1, x), x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](s', 1 + (z - 1), 1 + (1 + x'') + xs) :|: s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](s, x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: member after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: member[Ite][True][Ite] after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](s', 1 + (z - 1), 1 + (1 + x'') + xs) :|: s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](s, x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {member,member[Ite][True][Ite]}, {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: ?, size: O(1) [2] member[Ite][True][Ite]: runtime: ?, size: O(1) [2] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: member after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' Computed RUNTIME bound using CoFloCo for: member[Ite][True][Ite] after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z'' ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](s', 1 + (z - 1), 1 + (1 + x'') + xs) :|: s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](2, 0, 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z = 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 0, 1 + (1 + x2) + xs) :|: xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](1, 1 + (z - 1), 1 + 0 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 1 }-> member[Ite][True][Ite](0, z, 1 + x + xs) :|: xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> member(z', xs) :|: xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](member[Ite][True][Ite](s, x, 1 + x1 + xs'), 1 + x + xs, 1 + x1 + xs') :|: s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 4 + x1 + xs' }-> overlap[Ite][True][Ite](s1, 1 + x + xs, 1 + x1 + xs') :|: s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: overlap[Ite][True][Ite] after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 Computed SIZE bound using CoFloCo for: overlap after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 4 + x1 + xs' }-> overlap[Ite][True][Ite](s1, 1 + x + xs, 1 + x1 + xs') :|: s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {overlap[Ite][True][Ite],overlap}, {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] overlap[Ite][True][Ite]: runtime: ?, size: O(1) [2] overlap: runtime: ?, size: O(1) [2] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: overlap[Ite][True][Ite] after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 4 + 3*z' + z'*z'' + z'' Computed RUNTIME bound using KoAT for: overlap after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 23 + 14*z + 4*z*z' + 6*z' ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 1 }-> overlap(z, z') :|: z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 4 + x1 + xs' }-> overlap[Ite][True][Ite](s1, 1 + x + xs, 1 + x1 + xs') :|: s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 2 }-> overlap[Ite][True][Ite](1, 1 + x + xs, 0) :|: z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> overlap(xs, z'') :|: xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] overlap[Ite][True][Ite]: runtime: O(n^2) [4 + 3*z' + z'*z'' + z''], size: O(1) [2] overlap: runtime: O(n^2) [23 + 14*z + 4*z*z' + 6*z'], size: O(1) [2] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 24 + 14*z + 4*z*z' + 6*z' }-> s10 :|: s10 >= 0, s10 <= 2, z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 13 + 4*x + x*x1 + x*xs' + 3*x1 + x1*xs + 4*xs + xs*xs' + 3*xs' }-> s8 :|: s8 >= 0, s8 <= 2, s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 9 + 3*x + 3*xs }-> s9 :|: s9 >= 0, s9 <= 2, z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 23 + 14*xs + 4*xs*z'' + 6*z'' }-> s11 :|: s11 >= 0, s11 <= 2, xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] overlap[Ite][True][Ite]: runtime: O(n^2) [4 + 3*z' + z'*z'' + z''], size: O(1) [2] overlap: runtime: O(n^2) [23 + 14*z + 4*z*z' + 6*z'], size: O(1) [2] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: goal after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 24 + 14*z + 4*z*z' + 6*z' }-> s10 :|: s10 >= 0, s10 <= 2, z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 13 + 4*x + x*x1 + x*xs' + 3*x1 + x1*xs + 4*xs + xs*xs' + 3*xs' }-> s8 :|: s8 >= 0, s8 <= 2, s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 9 + 3*x + 3*xs }-> s9 :|: s9 >= 0, s9 <= 2, z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 23 + 14*xs + 4*xs*z'' + 6*z'' }-> s11 :|: s11 >= 0, s11 <= 2, xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: {goal} Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] overlap[Ite][True][Ite]: runtime: O(n^2) [4 + 3*z' + z'*z'' + z''], size: O(1) [2] overlap: runtime: O(n^2) [23 + 14*z + 4*z*z' + 6*z'], size: O(1) [2] goal: runtime: ?, size: O(1) [2] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: goal after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 24 + 14*z + 4*z*z' + 6*z' ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: !EQ(z, z') -{ 0 }-> s'' :|: s'' >= 0, s'' <= 2, z - 1 >= 0, z' - 1 >= 0 !EQ(z, z') -{ 0 }-> 2 :|: z = 0, z' = 0 !EQ(z, z') -{ 0 }-> 1 :|: z' - 1 >= 0, z = 0 !EQ(z, z') -{ 0 }-> 1 :|: z - 1 >= 0, z' = 0 !EQ(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 goal(z, z') -{ 24 + 14*z + 4*z*z' + 6*z' }-> s10 :|: s10 >= 0, s10 <= 2, z >= 0, z' >= 0 member(z, z') -{ 4 + x'' + xs }-> s2 :|: s2 >= 0, s2 <= 2, s' >= 0, s' <= 2, xs >= 0, z - 1 >= 0, z' = 1 + (1 + x'') + xs, x'' >= 0 member(z, z') -{ 2 + z' }-> s3 :|: s3 >= 0, s3 <= 2, z' - 1 >= 0, z - 1 >= 0 member(z, z') -{ 4 + x2 + xs }-> s4 :|: s4 >= 0, s4 <= 2, xs >= 0, z' = 1 + (1 + x2) + xs, z = 0, x2 >= 0 member(z, z') -{ 2 + z' }-> s5 :|: s5 >= 0, s5 <= 2, z' - 1 >= 0, z = 0 member(z, z') -{ 3 + x + xs }-> s6 :|: s6 >= 0, s6 <= 2, xs >= 0, z' = 1 + x + xs, z >= 0, x >= 0 member(z, z') -{ 1 }-> 1 :|: z >= 0, z' = 0 member[Ite][True][Ite](z, z', z'') -{ 2 + xs }-> s7 :|: s7 >= 0, s7 <= 2, xs >= 0, z = 1, z' >= 0, x >= 0, z'' = 1 + x + xs member[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z'' >= 0, z' >= 0 member[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 notEmpty(z) -{ 1 }-> 2 :|: z = 1 + x + xs, xs >= 0, x >= 0 notEmpty(z) -{ 1 }-> 1 :|: z = 0 overlap(z, z') -{ 13 + 4*x + x*x1 + x*xs' + 3*x1 + x1*xs + 4*xs + xs*xs' + 3*xs' }-> s8 :|: s8 >= 0, s8 <= 2, s1 >= 0, s1 <= 2, s >= 0, s <= 2, z = 1 + x + xs, xs >= 0, x1 >= 0, z' = 1 + x1 + xs', x >= 0, xs' >= 0 overlap(z, z') -{ 9 + 3*x + 3*xs }-> s9 :|: s9 >= 0, s9 <= 2, z = 1 + x + xs, xs >= 0, x >= 0, z' = 0 overlap(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 overlap[Ite][True][Ite](z, z', z'') -{ 23 + 14*xs + 4*xs*z'' + 6*z'' }-> s11 :|: s11 >= 0, s11 <= 2, xs >= 0, z' = 1 + x + xs, z = 1, z'' >= 0, x >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 2 :|: z = 2, z' >= 0, z'' >= 0 overlap[Ite][True][Ite](z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 Function symbols to be analyzed: Previous analysis results are: notEmpty: runtime: O(1) [1], size: O(1) [2] !EQ: runtime: O(1) [0], size: O(1) [2] member: runtime: O(n^1) [2 + z'], size: O(1) [2] member[Ite][True][Ite]: runtime: O(n^1) [1 + z''], size: O(1) [2] overlap[Ite][True][Ite]: runtime: O(n^2) [4 + 3*z' + z'*z'' + z''], size: O(1) [2] overlap: runtime: O(n^2) [23 + 14*z + 4*z*z' + 6*z'], size: O(1) [2] goal: runtime: O(n^2) [24 + 14*z + 4*z*z' + 6*z'], size: O(1) [2] ---------------------------------------- (47) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (48) BOUNDS(1, n^2) ---------------------------------------- (49) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (50) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) The (relative) TRS S consists of the following rules: !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Rewrite Strategy: INNERMOST ---------------------------------------- (51) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (52) Obligation: Innermost TRS: Rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Types: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0' -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' ---------------------------------------- (53) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: overlap, member, !EQ They will be analysed ascendingly in the following order: member < overlap !EQ < member ---------------------------------------- (54) Obligation: Innermost TRS: Rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Types: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0' -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: !EQ, overlap, member They will be analysed ascendingly in the following order: member < overlap !EQ < member ---------------------------------------- (55) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Induction Base: !EQ(gen_S:0'5_0(0), gen_S:0'5_0(+(1, 0))) ->_R^Omega(0) False Induction Step: !EQ(gen_S:0'5_0(+(n7_0, 1)), gen_S:0'5_0(+(1, +(n7_0, 1)))) ->_R^Omega(0) !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) ->_IH False We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (56) Obligation: Innermost TRS: Rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Types: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0' -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: member, overlap They will be analysed ascendingly in the following order: member < overlap ---------------------------------------- (57) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n286_0)) -> False, rt in Omega(1 + n286_0) Induction Base: member(gen_S:0'5_0(1), gen_Cons:Nil4_0(0)) ->_R^Omega(1) False Induction Step: member(gen_S:0'5_0(1), gen_Cons:Nil4_0(+(n286_0, 1))) ->_R^Omega(1) member[Ite][True][Ite](!EQ(0', gen_S:0'5_0(1)), gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n286_0))) ->_L^Omega(0) member[Ite][True][Ite](False, gen_S:0'5_0(1), Cons(0', gen_Cons:Nil4_0(n286_0))) ->_R^Omega(0) member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n286_0)) ->_IH False We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (58) Complex Obligation (BEST) ---------------------------------------- (59) Obligation: Proved the lower bound n^1 for the following obligation: Innermost TRS: Rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Types: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0' -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: member, overlap They will be analysed ascendingly in the following order: member < overlap ---------------------------------------- (60) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (61) BOUNDS(n^1, INF) ---------------------------------------- (62) Obligation: Innermost TRS: Rules: overlap(Cons(x, xs), ys) -> overlap[Ite][True][Ite](member(x, ys), Cons(x, xs), ys) overlap(Nil, ys) -> False member(x', Cons(x, xs)) -> member[Ite][True][Ite](!EQ(x, x'), x', Cons(x, xs)) member(x, Nil) -> False notEmpty(Cons(x, xs)) -> True notEmpty(Nil) -> False goal(xs, ys) -> overlap(xs, ys) !EQ(S(x), S(y)) -> !EQ(x, y) !EQ(0', S(y)) -> False !EQ(S(x), 0') -> False !EQ(0', 0') -> True overlap[Ite][True][Ite](False, Cons(x, xs), ys) -> overlap(xs, ys) member[Ite][True][Ite](False, x', Cons(x, xs)) -> member(x', xs) overlap[Ite][True][Ite](True, xs, ys) -> True member[Ite][True][Ite](True, x, xs) -> True Types: overlap :: Cons:Nil -> Cons:Nil -> False:True Cons :: S:0' -> Cons:Nil -> Cons:Nil overlap[Ite][True][Ite] :: False:True -> Cons:Nil -> Cons:Nil -> False:True member :: S:0' -> Cons:Nil -> False:True Nil :: Cons:Nil False :: False:True member[Ite][True][Ite] :: False:True -> S:0' -> Cons:Nil -> False:True !EQ :: S:0' -> S:0' -> False:True notEmpty :: Cons:Nil -> False:True True :: False:True goal :: Cons:Nil -> Cons:Nil -> False:True S :: S:0' -> S:0' 0' :: S:0' hole_False:True1_0 :: False:True hole_Cons:Nil2_0 :: Cons:Nil hole_S:0'3_0 :: S:0' gen_Cons:Nil4_0 :: Nat -> Cons:Nil gen_S:0'5_0 :: Nat -> S:0' Lemmas: !EQ(gen_S:0'5_0(n7_0), gen_S:0'5_0(+(1, n7_0))) -> False, rt in Omega(0) member(gen_S:0'5_0(1), gen_Cons:Nil4_0(n286_0)) -> False, rt in Omega(1 + n286_0) Generator Equations: gen_Cons:Nil4_0(0) <=> Nil gen_Cons:Nil4_0(+(x, 1)) <=> Cons(0', gen_Cons:Nil4_0(x)) gen_S:0'5_0(0) <=> 0' gen_S:0'5_0(+(x, 1)) <=> S(gen_S:0'5_0(x)) The following defined symbols remain to be analysed: overlap ---------------------------------------- (63) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: overlap(gen_Cons:Nil4_0(n633_0), gen_Cons:Nil4_0(0)) -> False, rt in Omega(1 + n633_0) Induction Base: overlap(gen_Cons:Nil4_0(0), gen_Cons:Nil4_0(0)) ->_R^Omega(1) False Induction Step: overlap(gen_Cons:Nil4_0(+(n633_0, 1)), gen_Cons:Nil4_0(0)) ->_R^Omega(1) overlap[Ite][True][Ite](member(0', gen_Cons:Nil4_0(0)), Cons(0', gen_Cons:Nil4_0(n633_0)), gen_Cons:Nil4_0(0)) ->_R^Omega(1) overlap[Ite][True][Ite](False, Cons(0', gen_Cons:Nil4_0(n633_0)), gen_Cons:Nil4_0(0)) ->_R^Omega(0) overlap(gen_Cons:Nil4_0(n633_0), gen_Cons:Nil4_0(0)) ->_IH False We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (64) BOUNDS(1, INF)