WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). (0) CpxTRS (1) CpxTrsToCdtProof [UPPER BOUND(ID), 7 ms] (2) CdtProblem (3) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CdtProblem (5) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CdtProblem (7) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 40 ms] (8) CdtProblem (9) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (10) BOUNDS(1, 1) (11) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (12) TRS for Loop Detection (13) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (14) BEST (15) proven lower bound (16) LowerBoundPropagationProof [FINISHED, 0 ms] (17) BOUNDS(n^1, INF) (18) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, 1) -> x *(1, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (2) Obligation: Complexity Dependency Tuples Problem Rules: *(z0, +(z1, z2)) -> +(*(z0, z1), *(z0, z2)) *(+(z0, z1), z2) -> +(*(z0, z2), *(z1, z2)) *(z0, 1) -> z0 *(1, z0) -> z0 Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, 1) -> c2 *'(1, z0) -> c3 S tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) *'(z0, 1) -> c2 *'(1, z0) -> c3 K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c_2, c1_2, c2, c3 ---------------------------------------- (3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing nodes: *'(1, z0) -> c3 *'(z0, 1) -> c2 ---------------------------------------- (4) Obligation: Complexity Dependency Tuples Problem Rules: *(z0, +(z1, z2)) -> +(*(z0, z1), *(z0, z2)) *(+(z0, z1), z2) -> +(*(z0, z2), *(z1, z2)) *(z0, 1) -> z0 *(1, z0) -> z0 Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) S tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) K tuples:none Defined Rule Symbols: *_2 Defined Pair Symbols: *'_2 Compound Symbols: c_2, c1_2 ---------------------------------------- (5) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: *(z0, +(z1, z2)) -> +(*(z0, z1), *(z0, z2)) *(+(z0, z1), z2) -> +(*(z0, z2), *(z1, z2)) *(z0, 1) -> z0 *(1, z0) -> z0 ---------------------------------------- (6) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) S tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) K tuples:none Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c_2, c1_2 ---------------------------------------- (7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) We considered the (Usable) Rules:none And the Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) The order we found is given by the following interpretation: Polynomial interpretation : POL(*'(x_1, x_2)) = [2] + [2]x_1 + [2]x_2 + [2]x_1*x_2 POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(c(x_1, x_2)) = x_1 + x_2 POL(c1(x_1, x_2)) = x_1 + x_2 ---------------------------------------- (8) Obligation: Complexity Dependency Tuples Problem Rules:none Tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) S tuples:none K tuples: *'(z0, +(z1, z2)) -> c(*'(z0, z1), *'(z0, z2)) *'(+(z0, z1), z2) -> c1(*'(z0, z2), *'(z1, z2)) Defined Rule Symbols:none Defined Pair Symbols: *'_2 Compound Symbols: c_2, c1_2 ---------------------------------------- (9) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (10) BOUNDS(1, 1) ---------------------------------------- (11) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, 1) -> x *(1, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (13) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence *(+(x, y), z) ->^+ +(*(x, z), *(y, z)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / +(x, y)]. The result substitution is [ ]. ---------------------------------------- (14) Complex Obligation (BEST) ---------------------------------------- (15) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, 1) -> x *(1, y) -> y S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (16) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (17) BOUNDS(n^1, INF) ---------------------------------------- (18) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: *(x, +(y, z)) -> +(*(x, y), *(x, z)) *(+(x, y), z) -> +(*(x, z), *(y, z)) *(x, 1) -> x *(1, y) -> y S is empty. Rewrite Strategy: INNERMOST