WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). (0) CpxTRS (1) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxWeightedTrs (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (4) CpxTypedWeightedTrs (5) CompletionProof [UPPER BOUND(ID), 0 ms] (6) CpxTypedWeightedCompleteTrs (7) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxTypedWeightedCompleteTrs (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (10) CpxRNTS (11) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxRNTS (13) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CpxRNTS (15) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) IntTrsBoundProof [UPPER BOUND(ID), 251 ms] (18) CpxRNTS (19) IntTrsBoundProof [UPPER BOUND(ID), 99 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 724 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 250 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 330 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 14 ms] (32) CpxRNTS (33) FinalProof [FINISHED, 0 ms] (34) BOUNDS(1, n^3) (35) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (36) TRS for Loop Detection (37) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (38) BEST (39) proven lower bound (40) LowerBoundPropagationProof [FINISHED, 0 ms] (41) BOUNDS(n^1, INF) (42) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (1) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (2) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] Rewrite Strategy: INNERMOST ---------------------------------------- (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (4) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s ifMinus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (5) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: quot_2 (c) The following functions are completely defined: minus_2 le_2 ifMinus_3 Due to the following rules being added: ifMinus(v0, v1, v2) -> 0 [0] And the following fresh constants: none ---------------------------------------- (6) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) [1] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) [1] ifMinus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s ifMinus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (7) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (8) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: le(0, Y) -> true [1] le(s(X), 0) -> false [1] le(s(X), s(Y)) -> le(X, Y) [1] minus(0, Y) -> 0 [1] minus(s(X), 0) -> ifMinus(false, s(X), 0) [2] minus(s(X), s(Y')) -> ifMinus(le(X, Y'), s(X), s(Y')) [2] ifMinus(true, s(X), Y) -> 0 [1] ifMinus(false, s(X), Y) -> s(minus(X, Y)) [1] quot(0, s(Y)) -> 0 [1] quot(s(0), s(Y)) -> s(quot(0, s(Y))) [2] quot(s(s(X')), s(Y)) -> s(quot(ifMinus(le(s(X'), Y), s(X'), Y), s(Y))) [2] ifMinus(v0, v1, v2) -> 0 [0] The TRS has the following type information: le :: 0:s -> 0:s -> true:false 0 :: 0:s true :: true:false s :: 0:s -> 0:s false :: true:false minus :: 0:s -> 0:s -> 0:s ifMinus :: true:false -> 0:s -> 0:s -> 0:s quot :: 0:s -> 0:s -> 0:s Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 true => 1 false => 0 ---------------------------------------- (10) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: Y >= 0, z = 1, z'' = Y, z' = 1 + X, X >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: v0 >= 0, z'' = v2, v1 >= 0, z = v0, z' = v1, v2 >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(X, Y) :|: Y >= 0, z'' = Y, z' = 1 + X, X >= 0, z = 0 le(z, z') -{ 1 }-> le(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 le(z, z') -{ 1 }-> 1 :|: z' = Y, Y >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z = 1 + X, X >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(X, Y'), 1 + X, 1 + Y') :|: z = 1 + X, Y' >= 0, X >= 0, z' = 1 + Y' minus(z, z') -{ 2 }-> ifMinus(0, 1 + X, 0) :|: z = 1 + X, X >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' = Y, Y >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + X', Y), 1 + X', Y), 1 + Y) :|: Y >= 0, z' = 1 + Y, X' >= 0, z = 1 + (1 + X') quot(z, z') -{ 2 }-> 1 + quot(0, 1 + Y) :|: Y >= 0, z = 1 + 0, z' = 1 + Y ---------------------------------------- (11) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (12) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 ---------------------------------------- (13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { le } { ifMinus, minus } { quot } ---------------------------------------- (14) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {le}, {ifMinus,minus}, {quot} ---------------------------------------- (15) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {le}, {ifMinus,minus}, {quot} ---------------------------------------- (17) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: le after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 1 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {le}, {ifMinus,minus}, {quot} Previous analysis results are: le: runtime: ?, size: O(1) [1] ---------------------------------------- (19) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: le after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 1 }-> le(z - 1, z' - 1) :|: z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 2 }-> ifMinus(le(z - 1, z' - 1), 1 + (z - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 2 }-> 1 + quot(ifMinus(le(1 + (z - 2), z' - 1), 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {ifMinus,minus}, {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {ifMinus,minus}, {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z' Computed SIZE bound using CoFloCo for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {ifMinus,minus}, {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ifMinus: runtime: ?, size: O(n^1) [z'] minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: ifMinus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 6 + 4*z' + z'*z'' + z'' Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 18 + 8*z + z*z' + 2*z' ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 1 }-> 1 + minus(z' - 1, z'') :|: z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 3 + z' }-> ifMinus(s', 1 + (z - 1), 1 + (z' - 1)) :|: s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 2 }-> ifMinus(0, 1 + (z - 1), 0) :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 3 + z' }-> 1 + quot(ifMinus(s'', 1 + (z - 2), z' - 1), 1 + (z' - 1)) :|: s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ifMinus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] minus: runtime: O(n^2) [18 + 8*z + z*z' + 2*z'], size: O(n^1) [z] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 11 + 8*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ifMinus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] minus: runtime: O(n^2) [18 + 8*z + z*z' + 2*z'], size: O(n^1) [z] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 11 + 8*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: {quot} Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ifMinus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] minus: runtime: O(n^2) [18 + 8*z + z*z' + 2*z'], size: O(n^1) [z] quot: runtime: ?, size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: quot after applying outer abstraction to obtain an ITS, resulting in: O(n^3) with polynomial bound: 1 + 7*z + z*z' + 3*z^2 + z^2*z' ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: ifMinus(z, z', z'') -{ 1 }-> 0 :|: z'' >= 0, z = 1, z' - 1 >= 0 ifMinus(z, z', z'') -{ 0 }-> 0 :|: z >= 0, z' >= 0, z'' >= 0 ifMinus(z, z', z'') -{ 11 + 8*z' + z'*z'' + z'' }-> 1 + s3 :|: s3 >= 0, s3 <= z' - 1, z'' >= 0, z' - 1 >= 0, z = 0 le(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= 1, z' - 1 >= 0, z - 1 >= 0 le(z, z') -{ 1 }-> 1 :|: z' >= 0, z = 0 le(z, z') -{ 1 }-> 0 :|: z - 1 >= 0, z' = 0 minus(z, z') -{ 8 + 4*z }-> s1 :|: s1 >= 0, s1 <= 1 + (z - 1), z - 1 >= 0, z' = 0 minus(z, z') -{ 9 + 4*z + z*z' + 2*z' }-> s2 :|: s2 >= 0, s2 <= 1 + (z - 1), s' >= 0, s' <= 1, z' - 1 >= 0, z - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 quot(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 quot(z, z') -{ 5 + 3*z + z*z' + z' }-> 1 + quot(s4, 1 + (z' - 1)) :|: s4 >= 0, s4 <= 1 + (z - 2), s'' >= 0, s'' <= 1, z' - 1 >= 0, z - 2 >= 0 quot(z, z') -{ 2 }-> 1 + quot(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + 0 Function symbols to be analyzed: Previous analysis results are: le: runtime: O(n^1) [2 + z'], size: O(1) [1] ifMinus: runtime: O(n^2) [6 + 4*z' + z'*z'' + z''], size: O(n^1) [z'] minus: runtime: O(n^2) [18 + 8*z + z*z' + 2*z'], size: O(n^1) [z] quot: runtime: O(n^3) [1 + 7*z + z*z' + 3*z^2 + z^2*z'], size: O(n^1) [z] ---------------------------------------- (33) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (34) BOUNDS(1, n^3) ---------------------------------------- (35) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (36) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (37) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence le(s(X), s(Y)) ->^+ le(X, Y) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [X / s(X), Y / s(Y)]. The result substitution is [ ]. ---------------------------------------- (38) Complex Obligation (BEST) ---------------------------------------- (39) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST ---------------------------------------- (40) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (41) BOUNDS(n^1, INF) ---------------------------------------- (42) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: le(0, Y) -> true le(s(X), 0) -> false le(s(X), s(Y)) -> le(X, Y) minus(0, Y) -> 0 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) ifMinus(true, s(X), Y) -> 0 ifMinus(false, s(X), Y) -> s(minus(X, Y)) quot(0, s(Y)) -> 0 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) S is empty. Rewrite Strategy: INNERMOST