/export/starexec/sandbox2/solver/bin/starexec_run_ttt2 /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem: a(x1) -> x1 a(b(x1)) -> b(a(c(a(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) Proof: String Reversal Processor: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) DP Processor: DPs: b#(a(x1)) -> b#(x1) b#(a(x1)) -> a#(b(x1)) b#(a(x1)) -> c#(a(b(x1))) b#(a(x1)) -> a#(c(a(b(x1)))) c#(c(c(x1))) -> b#(x1) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) TDG Processor: DPs: b#(a(x1)) -> b#(x1) b#(a(x1)) -> a#(b(x1)) b#(a(x1)) -> c#(a(b(x1))) b#(a(x1)) -> a#(c(a(b(x1)))) c#(c(c(x1))) -> b#(x1) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) graph: c#(c(c(x1))) -> b#(x1) -> b#(a(x1)) -> a#(c(a(b(x1)))) c#(c(c(x1))) -> b#(x1) -> b#(a(x1)) -> c#(a(b(x1))) c#(c(c(x1))) -> b#(x1) -> b#(a(x1)) -> a#(b(x1)) c#(c(c(x1))) -> b#(x1) -> b#(a(x1)) -> b#(x1) b#(a(x1)) -> c#(a(b(x1))) -> c#(c(c(x1))) -> b#(x1) b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> a#(c(a(b(x1)))) b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> c#(a(b(x1))) b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> a#(b(x1)) b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> b#(x1) SCC Processor: #sccs: 1 #rules: 3 #arcs: 9/25 DPs: c#(c(c(x1))) -> b#(x1) b#(a(x1)) -> b#(x1) b#(a(x1)) -> c#(a(b(x1))) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) Arctic Interpretation Processor: dimension: 2 usable rules: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) interpretation: [b#](x0) = [0 1]x0, [1 0] [-&] [b](x0) = [1 0]x0 + [3 ], [c#](x0) = [-& 0 ]x0 + [0], [1 0] [3] [a](x0) = [0 0]x0 + [2], [-& 0 ] [0] [c](x0) = [0 1 ]x0 + [3] orientation: c#(c(c(x1))) = [1 2]x1 + [4] >= [0 1]x1 = b#(x1) b#(a(x1)) = [1 1]x1 + [3] >= [0 1]x1 = b#(x1) b#(a(x1)) = [1 1]x1 + [3] >= [1 0]x1 + [3] = c#(a(b(x1))) [1 0] [3] a(x1) = [0 0]x1 + [2] >= x1 = x1 [2 1] [4] [2 1] [4] b(a(x1)) = [2 1]x1 + [4] >= [2 1]x1 + [4] = a(c(a(b(x1)))) [1 0] [-&] b(x1) = [1 0]x1 + [3 ] >= x1 = x1 [1 2] [4] [1 0] [-&] c(c(c(x1))) = [2 3]x1 + [5] >= [1 0]x1 + [3 ] = b(x1) problem: DPs: b#(a(x1)) -> b#(x1) b#(a(x1)) -> c#(a(b(x1))) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) Restore Modifier: DPs: b#(a(x1)) -> b#(x1) b#(a(x1)) -> c#(a(b(x1))) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) EDG Processor: DPs: b#(a(x1)) -> b#(x1) b#(a(x1)) -> c#(a(b(x1))) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) graph: b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> b#(x1) b#(a(x1)) -> b#(x1) -> b#(a(x1)) -> c#(a(b(x1))) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: b#(a(x1)) -> b#(x1) TRS: a(x1) -> x1 b(a(x1)) -> a(c(a(b(x1)))) b(x1) -> x1 c(c(c(x1))) -> b(x1) Usable Rule Processor: DPs: b#(a(x1)) -> b#(x1) TRS: Arctic Interpretation Processor: dimension: 4 usable rules: interpretation: [b#](x0) = [0 -& -& -&]x0, [1 0 0 0] [0] [0 0 0 0] [0] [a](x0) = [1 0 0 0]x0 + [0] [0 0 0 0] [0] orientation: b#(a(x1)) = [1 0 0 0]x1 + [0] >= [0 -& -& -&]x1 = b#(x1) problem: DPs: TRS: Qed