/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { 0->0, 1->1, 3->2, 4->3, 5->4, 2->5 }, it remains to prove termination of the 5-rule system { 0 -> 1 , 0 0 -> 0 , 2 3 4 -> 3 2 4 , 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 -> 1 1 0 1 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 , 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 1 1 -> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 } The system was reversed. After renaming modulo { 0->0, 1->1, 4->2, 3->3, 2->4, 5->5 }, it remains to prove termination of the 5-rule system { 0 -> 1 , 0 0 -> 0 , 2 3 4 -> 2 4 3 , 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 -> 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 , 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 -> 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 } Applying sparse untiling TRFCU(2) [Geser/Hofbauer/Waldmann, FSCD 2019]. After renaming modulo { 0->0, 1->1, 5->2 }, it remains to prove termination of the 4-rule system { 0 -> 1 , 0 0 -> 0 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -> 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 1 , 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 -> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 19 | | 0 1 | \ / 1 is interpreted by / \ | 1 0 | | 0 1 | \ / 2 is interpreted by / \ | 1 37 | | 0 1 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.