/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { a->0, b->1, c->2 }, it remains to prove termination of the 6-rule system { 0 0 1 -> 2 2 2 , 0 2 0 -> 2 2 0 , 0 2 0 -> 1 0 0 , 1 0 2 ->= 1 1 2 , 1 2 1 ->= 0 1 1 , 2 0 1 ->= 1 1 0 } The system was reversed. After renaming modulo { 1->0, 0->1, 2->2 }, it remains to prove termination of the 6-rule system { 0 1 1 -> 2 2 2 , 1 2 1 -> 1 2 2 , 1 2 1 -> 1 1 0 , 2 1 0 ->= 2 0 0 , 0 2 0 ->= 0 0 1 , 0 1 2 ->= 1 0 0 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 1]->2, [1, 0]->3, [0, 2]->4, [2, 2]->5, [2, 0]->6, [1, 2]->7, [2, 1]->8 }, it remains to prove termination of the 54-rule system { 0 1 2 3 -> 4 5 5 6 , 1 7 8 3 -> 1 7 5 6 , 1 7 8 3 -> 1 2 3 0 , 4 8 3 0 ->= 4 6 0 0 , 0 4 6 0 ->= 0 0 1 3 , 0 1 7 6 ->= 1 3 0 0 , 0 1 2 2 -> 4 5 5 8 , 1 7 8 2 -> 1 7 5 8 , 1 7 8 2 -> 1 2 3 1 , 4 8 3 1 ->= 4 6 0 1 , 0 4 6 1 ->= 0 0 1 2 , 0 1 7 8 ->= 1 3 0 1 , 0 1 2 7 -> 4 5 5 5 , 1 7 8 7 -> 1 7 5 5 , 1 7 8 7 -> 1 2 3 4 , 4 8 3 4 ->= 4 6 0 4 , 0 4 6 4 ->= 0 0 1 7 , 0 1 7 5 ->= 1 3 0 4 , 3 1 2 3 -> 7 5 5 6 , 2 7 8 3 -> 2 7 5 6 , 2 7 8 3 -> 2 2 3 0 , 7 8 3 0 ->= 7 6 0 0 , 3 4 6 0 ->= 3 0 1 3 , 3 1 7 6 ->= 2 3 0 0 , 3 1 2 2 -> 7 5 5 8 , 2 7 8 2 -> 2 7 5 8 , 2 7 8 2 -> 2 2 3 1 , 7 8 3 1 ->= 7 6 0 1 , 3 4 6 1 ->= 3 0 1 2 , 3 1 7 8 ->= 2 3 0 1 , 3 1 2 7 -> 7 5 5 5 , 2 7 8 7 -> 2 7 5 5 , 2 7 8 7 -> 2 2 3 4 , 7 8 3 4 ->= 7 6 0 4 , 3 4 6 4 ->= 3 0 1 7 , 3 1 7 5 ->= 2 3 0 4 , 6 1 2 3 -> 5 5 5 6 , 8 7 8 3 -> 8 7 5 6 , 8 7 8 3 -> 8 2 3 0 , 5 8 3 0 ->= 5 6 0 0 , 6 4 6 0 ->= 6 0 1 3 , 6 1 7 6 ->= 8 3 0 0 , 6 1 2 2 -> 5 5 5 8 , 8 7 8 2 -> 8 7 5 8 , 8 7 8 2 -> 8 2 3 1 , 5 8 3 1 ->= 5 6 0 1 , 6 4 6 1 ->= 6 0 1 2 , 6 1 7 8 ->= 8 3 0 1 , 6 1 2 7 -> 5 5 5 5 , 8 7 8 7 -> 8 7 5 5 , 8 7 8 7 -> 8 2 3 4 , 5 8 3 4 ->= 5 6 0 4 , 6 4 6 4 ->= 6 0 1 7 , 6 1 7 5 ->= 8 3 0 4 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 0 | | 0 1 | \ / 1 is interpreted by / \ | 1 2 | | 0 1 | \ / 2 is interpreted by / \ | 1 4 | | 0 1 | \ / 3 is interpreted by / \ | 1 2 | | 0 1 | \ / 4 is interpreted by / \ | 1 5 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 7 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { }, it remains to prove termination of the 0-rule system { } The system is trivially terminating.