/export/starexec/sandbox2/solver/bin/starexec_run_default /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { c->0, b->1, a->2 }, it remains to prove termination of the 6-rule system { 0 0 0 -> 0 1 0 , 1 1 0 -> 2 0 1 , 1 2 1 -> 0 0 1 , 1 2 2 ->= 2 2 1 , 1 1 2 ->= 2 1 0 , 1 1 2 ->= 2 2 0 } The length-preserving system was inverted. After renaming modulo { 0->0, 1->1, 2->2 }, it remains to prove termination of the 6-rule system { 0 1 0 -> 0 0 0 , 2 0 1 -> 1 1 0 , 0 0 1 -> 1 2 1 , 2 2 1 ->= 1 2 2 , 2 1 0 ->= 1 1 2 , 2 2 0 ->= 1 1 2 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 0]->2, [0, 2]->3, [2, 0]->4, [1, 1]->5, [1, 2]->6, [2, 1]->7, [2, 2]->8 }, it remains to prove termination of the 54-rule system { 0 1 2 0 -> 0 0 0 0 , 3 4 1 2 -> 1 5 2 0 , 0 0 1 2 -> 1 6 7 2 , 3 8 7 2 ->= 1 6 8 4 , 3 7 2 0 ->= 1 5 6 4 , 3 8 4 0 ->= 1 5 6 4 , 0 1 2 1 -> 0 0 0 1 , 3 4 1 5 -> 1 5 2 1 , 0 0 1 5 -> 1 6 7 5 , 3 8 7 5 ->= 1 6 8 7 , 3 7 2 1 ->= 1 5 6 7 , 3 8 4 1 ->= 1 5 6 7 , 0 1 2 3 -> 0 0 0 3 , 3 4 1 6 -> 1 5 2 3 , 0 0 1 6 -> 1 6 7 6 , 3 8 7 6 ->= 1 6 8 8 , 3 7 2 3 ->= 1 5 6 8 , 3 8 4 3 ->= 1 5 6 8 , 2 1 2 0 -> 2 0 0 0 , 6 4 1 2 -> 5 5 2 0 , 2 0 1 2 -> 5 6 7 2 , 6 8 7 2 ->= 5 6 8 4 , 6 7 2 0 ->= 5 5 6 4 , 6 8 4 0 ->= 5 5 6 4 , 2 1 2 1 -> 2 0 0 1 , 6 4 1 5 -> 5 5 2 1 , 2 0 1 5 -> 5 6 7 5 , 6 8 7 5 ->= 5 6 8 7 , 6 7 2 1 ->= 5 5 6 7 , 6 8 4 1 ->= 5 5 6 7 , 2 1 2 3 -> 2 0 0 3 , 6 4 1 6 -> 5 5 2 3 , 2 0 1 6 -> 5 6 7 6 , 6 8 7 6 ->= 5 6 8 8 , 6 7 2 3 ->= 5 5 6 8 , 6 8 4 3 ->= 5 5 6 8 , 4 1 2 0 -> 4 0 0 0 , 8 4 1 2 -> 7 5 2 0 , 4 0 1 2 -> 7 6 7 2 , 8 8 7 2 ->= 7 6 8 4 , 8 7 2 0 ->= 7 5 6 4 , 8 8 4 0 ->= 7 5 6 4 , 4 1 2 1 -> 4 0 0 1 , 8 4 1 5 -> 7 5 2 1 , 4 0 1 5 -> 7 6 7 5 , 8 8 7 5 ->= 7 6 8 7 , 8 7 2 1 ->= 7 5 6 7 , 8 8 4 1 ->= 7 5 6 7 , 4 1 2 3 -> 4 0 0 3 , 8 4 1 6 -> 7 5 2 3 , 4 0 1 6 -> 7 6 7 6 , 8 8 7 6 ->= 7 6 8 8 , 8 7 2 3 ->= 7 5 6 8 , 8 8 4 3 ->= 7 5 6 8 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 2 | | 0 1 | \ / 1 is interpreted by / \ | 1 4 | | 0 1 | \ / 2 is interpreted by / \ | 1 1 | | 0 1 | \ / 3 is interpreted by / \ | 1 8 | | 0 1 | \ / 4 is interpreted by / \ | 1 0 | | 0 1 | \ / 5 is interpreted by / \ | 1 0 | | 0 1 | \ / 6 is interpreted by / \ | 1 3 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 3 | | 0 1 | \ / After renaming modulo { 6->0, 8->1, 7->2, 5->3 }, it remains to prove termination of the 4-rule system { 0 1 2 3 ->= 3 0 1 2 , 0 1 2 0 ->= 3 0 1 1 , 1 1 2 3 ->= 2 0 1 2 , 1 1 2 0 ->= 2 0 1 1 } The system is trivially terminating.