/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { b->0, c->1, a->2 }, it remains to prove termination of the 6-rule system { 0 1 2 -> 2 0 2 , 2 2 2 -> 1 1 1 , 2 2 2 -> 2 0 2 , 1 1 2 ->= 1 2 1 , 0 2 0 ->= 0 1 1 , 1 2 0 ->= 2 1 0 } The length-preserving system was inverted. After renaming modulo { 2->0, 0->1, 1->2 }, it remains to prove termination of the 6-rule system { 0 1 0 -> 1 2 0 , 2 2 2 -> 0 0 0 , 0 1 0 -> 0 0 0 , 2 0 2 ->= 2 2 0 , 1 2 2 ->= 1 0 1 , 0 2 1 ->= 2 0 1 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 0]->2, [1, 2]->3, [2, 0]->4, [0, 2]->5, [2, 2]->6, [2, 1]->7, [1, 1]->8 }, it remains to prove termination of the 54-rule system { 0 1 2 0 -> 1 3 4 0 , 5 6 6 4 -> 0 0 0 0 , 0 1 2 0 -> 0 0 0 0 , 5 4 5 4 ->= 5 6 4 0 , 1 3 6 4 ->= 1 2 1 2 , 0 5 7 2 ->= 5 4 1 2 , 0 1 2 1 -> 1 3 4 1 , 5 6 6 7 -> 0 0 0 1 , 0 1 2 1 -> 0 0 0 1 , 5 4 5 7 ->= 5 6 4 1 , 1 3 6 7 ->= 1 2 1 8 , 0 5 7 8 ->= 5 4 1 8 , 0 1 2 5 -> 1 3 4 5 , 5 6 6 6 -> 0 0 0 5 , 0 1 2 5 -> 0 0 0 5 , 5 4 5 6 ->= 5 6 4 5 , 1 3 6 6 ->= 1 2 1 3 , 0 5 7 3 ->= 5 4 1 3 , 2 1 2 0 -> 8 3 4 0 , 3 6 6 4 -> 2 0 0 0 , 2 1 2 0 -> 2 0 0 0 , 3 4 5 4 ->= 3 6 4 0 , 8 3 6 4 ->= 8 2 1 2 , 2 5 7 2 ->= 3 4 1 2 , 2 1 2 1 -> 8 3 4 1 , 3 6 6 7 -> 2 0 0 1 , 2 1 2 1 -> 2 0 0 1 , 3 4 5 7 ->= 3 6 4 1 , 8 3 6 7 ->= 8 2 1 8 , 2 5 7 8 ->= 3 4 1 8 , 2 1 2 5 -> 8 3 4 5 , 3 6 6 6 -> 2 0 0 5 , 2 1 2 5 -> 2 0 0 5 , 3 4 5 6 ->= 3 6 4 5 , 8 3 6 6 ->= 8 2 1 3 , 2 5 7 3 ->= 3 4 1 3 , 4 1 2 0 -> 7 3 4 0 , 6 6 6 4 -> 4 0 0 0 , 4 1 2 0 -> 4 0 0 0 , 6 4 5 4 ->= 6 6 4 0 , 7 3 6 4 ->= 7 2 1 2 , 4 5 7 2 ->= 6 4 1 2 , 4 1 2 1 -> 7 3 4 1 , 6 6 6 7 -> 4 0 0 1 , 4 1 2 1 -> 4 0 0 1 , 6 4 5 7 ->= 6 6 4 1 , 7 3 6 7 ->= 7 2 1 8 , 4 5 7 8 ->= 6 4 1 8 , 4 1 2 5 -> 7 3 4 5 , 6 6 6 6 -> 4 0 0 5 , 4 1 2 5 -> 4 0 0 5 , 6 4 5 6 ->= 6 6 4 5 , 7 3 6 6 ->= 7 2 1 3 , 4 5 7 3 ->= 6 4 1 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 1 | | 0 1 | \ / 2 is interpreted by / \ | 1 1 | | 0 1 | \ / 3 is interpreted by / \ | 1 1 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / 6 is interpreted by / \ | 1 1 | | 0 1 | \ / 7 is interpreted by / \ | 1 1 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 5->5, 6->6, 7->7, 8->8 }, it remains to prove termination of the 48-rule system { 0 1 2 0 -> 1 3 4 0 , 5 6 6 4 -> 0 0 0 0 , 0 1 2 0 -> 0 0 0 0 , 5 4 5 4 ->= 5 6 4 0 , 1 3 6 4 ->= 1 2 1 2 , 0 5 7 2 ->= 5 4 1 2 , 0 1 2 1 -> 1 3 4 1 , 5 6 6 7 -> 0 0 0 1 , 0 1 2 1 -> 0 0 0 1 , 5 4 5 7 ->= 5 6 4 1 , 0 5 7 8 ->= 5 4 1 8 , 0 1 2 5 -> 1 3 4 5 , 5 6 6 6 -> 0 0 0 5 , 0 1 2 5 -> 0 0 0 5 , 5 4 5 6 ->= 5 6 4 5 , 1 3 6 6 ->= 1 2 1 3 , 0 5 7 3 ->= 5 4 1 3 , 3 6 6 4 -> 2 0 0 0 , 2 1 2 0 -> 2 0 0 0 , 3 4 5 4 ->= 3 6 4 0 , 8 3 6 4 ->= 8 2 1 2 , 2 5 7 2 ->= 3 4 1 2 , 3 6 6 7 -> 2 0 0 1 , 2 1 2 1 -> 2 0 0 1 , 3 4 5 7 ->= 3 6 4 1 , 2 5 7 8 ->= 3 4 1 8 , 3 6 6 6 -> 2 0 0 5 , 2 1 2 5 -> 2 0 0 5 , 3 4 5 6 ->= 3 6 4 5 , 8 3 6 6 ->= 8 2 1 3 , 2 5 7 3 ->= 3 4 1 3 , 4 1 2 0 -> 7 3 4 0 , 6 6 6 4 -> 4 0 0 0 , 4 1 2 0 -> 4 0 0 0 , 6 4 5 4 ->= 6 6 4 0 , 7 3 6 4 ->= 7 2 1 2 , 4 5 7 2 ->= 6 4 1 2 , 4 1 2 1 -> 7 3 4 1 , 6 6 6 7 -> 4 0 0 1 , 4 1 2 1 -> 4 0 0 1 , 6 4 5 7 ->= 6 6 4 1 , 4 5 7 8 ->= 6 4 1 8 , 4 1 2 5 -> 7 3 4 5 , 6 6 6 6 -> 4 0 0 5 , 4 1 2 5 -> 4 0 0 5 , 6 4 5 6 ->= 6 6 4 5 , 7 3 6 6 ->= 7 2 1 3 , 4 5 7 3 ->= 6 4 1 3 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 2 | | 0 1 | \ / 2 is interpreted by / \ | 1 1 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 0 | | 0 1 | \ / 5 is interpreted by / \ | 1 7 | | 0 1 | \ / 6 is interpreted by / \ | 1 5 | | 0 1 | \ / 7 is interpreted by / \ | 1 2 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 5->0, 4->1, 6->2, 3->3 }, it remains to prove termination of the 3-rule system { 0 1 0 2 ->= 0 2 1 0 , 3 1 0 2 ->= 3 2 1 0 , 2 1 0 2 ->= 2 2 1 0 } The system is trivially terminating.