/export/starexec/sandbox2/solver/bin/starexec_run_ttt2 /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES Problem: strict: b(b(c(x1))) -> b(a(a(x1))) a(c(c(x1))) -> a(a(b(x1))) weak: a(c(b(x1))) -> c(a(b(x1))) a(c(c(x1))) -> c(c(b(x1))) a(a(a(x1))) -> a(b(a(x1))) a(b(a(x1))) -> a(b(c(x1))) Proof: Matrix Interpretation Processor: dim=2 interpretation: [1 0] [1] [b](x0) = [0 0]x0 + [0], [1 1] [0] [c](x0) = [0 0]x0 + [1], [1 1] [0] [a](x0) = [0 0]x0 + [1] orientation: [1 1] [2] [1 1] [2] b(b(c(x1))) = [0 0]x1 + [0] >= [0 0]x1 + [0] = b(a(a(x1))) [1 1] [2] [1 0] [2] a(c(c(x1))) = [0 0]x1 + [1] >= [0 0]x1 + [1] = a(a(b(x1))) [1 0] [2] [1 0] [2] a(c(b(x1))) = [0 0]x1 + [1] >= [0 0]x1 + [1] = c(a(b(x1))) [1 1] [2] [1 0] [2] a(c(c(x1))) = [0 0]x1 + [1] >= [0 0]x1 + [1] = c(c(b(x1))) [1 1] [2] [1 1] [1] a(a(a(x1))) = [0 0]x1 + [1] >= [0 0]x1 + [1] = a(b(a(x1))) [1 1] [1] [1 1] [1] a(b(a(x1))) = [0 0]x1 + [1] >= [0 0]x1 + [1] = a(b(c(x1))) problem: strict: b(b(c(x1))) -> b(a(a(x1))) a(c(c(x1))) -> a(a(b(x1))) weak: a(c(b(x1))) -> c(a(b(x1))) a(c(c(x1))) -> c(c(b(x1))) a(b(a(x1))) -> a(b(c(x1))) Arctic Interpretation Processor: dimension: 2 interpretation: [0 -&] [b](x0) = [0 -&]x0, [0 0] [c](x0) = [1 1]x0, [0 0 ] [a](x0) = [-& 0 ]x0 orientation: [0 0] [0 0] b(b(c(x1))) = [0 0]x1 >= [0 0]x1 = b(a(a(x1))) [2 2] [0 -&] a(c(c(x1))) = [2 2]x1 >= [0 -&]x1 = a(a(b(x1))) [1 -&] [0 -&] a(c(b(x1))) = [1 -&]x1 >= [1 -&]x1 = c(a(b(x1))) [2 2] [1 -&] a(c(c(x1))) = [2 2]x1 >= [2 -&]x1 = c(c(b(x1))) [0 0] [0 0] a(b(a(x1))) = [0 0]x1 >= [0 0]x1 = a(b(c(x1))) problem: strict: b(b(c(x1))) -> b(a(a(x1))) weak: a(c(b(x1))) -> c(a(b(x1))) a(c(c(x1))) -> c(c(b(x1))) a(b(a(x1))) -> a(b(c(x1))) RT Transformation Processor: b(b(c(x1))) -> b(a(a(x1))) a(c(b(x1))) -> c(a(b(x1))) a(c(c(x1))) -> c(c(b(x1))) a(b(a(x1))) -> a(b(c(x1))) Matrix Interpretation Processor: dim=2 interpretation: [2 0] [b](x0) = [0 0]x0, [1 1] [0] [c](x0) = [1 1]x0 + [2], [1 1] [a](x0) = [1 1]x0 orientation: [4 4] [4 4] b(b(c(x1))) = [0 0]x1 >= [0 0]x1 = b(a(a(x1))) [4 0] [2] [4 0] [0] a(c(b(x1))) = [4 0]x1 + [2] >= [4 0]x1 + [2] = c(a(b(x1))) [4 4] [6] [4 0] [2] a(c(c(x1))) = [4 4]x1 + [6] >= [4 0]x1 + [4] = c(c(b(x1))) [2 2] [2 2] a(b(a(x1))) = [2 2]x1 >= [2 2]x1 = a(b(c(x1))) problem: b(b(c(x1))) -> b(a(a(x1))) a(b(a(x1))) -> a(b(c(x1))) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [0] [b](x0) = [0 0 0]x0 + [1] [0 0 0] [1], [1 0 1] [c](x0) = [0 1 0]x0 [0 0 0] , [1 1 0] [a](x0) = [0 0 1]x0 [0 0 0] orientation: [1 1 1] [1] [1 1 1] [0] b(b(c(x1))) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [1] = b(a(a(x1))) [0 0 0] [1] [0 0 0] [1] [1 1 1] [1] [1 1 1] [1] a(b(a(x1))) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [1] = a(b(c(x1))) [0 0 0] [0] [0 0 0] [0] problem: a(b(a(x1))) -> a(b(c(x1))) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [b](x0) = [1 0 0]x0 [0 1 1] , [1 0 0] [c](x0) = [0 0 0]x0 [0 1 0] , [1 0 1] [0] [a](x0) = [0 0 0]x0 + [1] [0 1 0] [0] orientation: [1 1 1] [1] [1 1 0] [0] a(b(a(x1))) = [0 0 0]x1 + [1] >= [0 0 0]x1 + [1] = a(b(c(x1))) [1 0 1] [0] [1 0 0] [0] problem: Qed