/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { b->0, c->1, a->2 }, it remains to prove termination of the 5-rule system { 0 1 0 -> 2 1 1 , 1 0 0 -> 1 1 0 , 1 2 2 ->= 1 0 0 , 2 1 2 ->= 0 2 2 , 2 1 0 ->= 0 2 1 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 0]->2, [0, 2]->3, [2, 1]->4, [1, 1]->5, [1, 2]->6, [2, 2]->7, [2, 0]->8 }, it remains to prove termination of the 45-rule system { 0 1 2 0 -> 3 4 5 2 , 1 2 0 0 -> 1 5 2 0 , 1 6 7 8 ->= 1 2 0 0 , 3 4 6 8 ->= 0 3 7 8 , 3 4 2 0 ->= 0 3 4 2 , 0 1 2 1 -> 3 4 5 5 , 1 2 0 1 -> 1 5 2 1 , 1 6 7 4 ->= 1 2 0 1 , 3 4 6 4 ->= 0 3 7 4 , 3 4 2 1 ->= 0 3 4 5 , 0 1 2 3 -> 3 4 5 6 , 1 2 0 3 -> 1 5 2 3 , 1 6 7 7 ->= 1 2 0 3 , 3 4 6 7 ->= 0 3 7 7 , 3 4 2 3 ->= 0 3 4 6 , 2 1 2 0 -> 6 4 5 2 , 5 2 0 0 -> 5 5 2 0 , 5 6 7 8 ->= 5 2 0 0 , 6 4 6 8 ->= 2 3 7 8 , 6 4 2 0 ->= 2 3 4 2 , 2 1 2 1 -> 6 4 5 5 , 5 2 0 1 -> 5 5 2 1 , 5 6 7 4 ->= 5 2 0 1 , 6 4 6 4 ->= 2 3 7 4 , 6 4 2 1 ->= 2 3 4 5 , 2 1 2 3 -> 6 4 5 6 , 5 2 0 3 -> 5 5 2 3 , 5 6 7 7 ->= 5 2 0 3 , 6 4 6 7 ->= 2 3 7 7 , 6 4 2 3 ->= 2 3 4 6 , 8 1 2 0 -> 7 4 5 2 , 4 2 0 0 -> 4 5 2 0 , 4 6 7 8 ->= 4 2 0 0 , 7 4 6 8 ->= 8 3 7 8 , 7 4 2 0 ->= 8 3 4 2 , 8 1 2 1 -> 7 4 5 5 , 4 2 0 1 -> 4 5 2 1 , 4 6 7 4 ->= 4 2 0 1 , 7 4 6 4 ->= 8 3 7 4 , 7 4 2 1 ->= 8 3 4 5 , 8 1 2 3 -> 7 4 5 6 , 4 2 0 3 -> 4 5 2 3 , 4 6 7 7 ->= 4 2 0 3 , 7 4 6 7 ->= 8 3 7 7 , 7 4 2 3 ->= 8 3 4 6 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 1 | | 0 1 | \ / 1 is interpreted by / \ | 1 1 | | 0 1 | \ / 2 is interpreted by / \ | 1 1 | | 0 1 | \ / 3 is interpreted by / \ | 1 1 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 0 | | 0 1 | \ / 6 is interpreted by / \ | 1 1 | | 0 1 | \ / 7 is interpreted by / \ | 1 1 | | 0 1 | \ / 8 is interpreted by / \ | 1 1 | | 0 1 | \ / After renaming modulo { 1->0, 6->1, 7->2, 8->3, 2->4, 0->5, 3->6, 4->7, 5->8 }, it remains to prove termination of the 24-rule system { 0 1 2 3 ->= 0 4 5 5 , 6 7 1 3 ->= 5 6 2 3 , 6 7 4 5 ->= 5 6 7 4 , 0 1 2 7 ->= 0 4 5 0 , 6 7 1 7 ->= 5 6 2 7 , 0 1 2 2 ->= 0 4 5 6 , 6 7 1 2 ->= 5 6 2 2 , 6 7 4 6 ->= 5 6 7 1 , 8 1 2 3 ->= 8 4 5 5 , 1 7 1 3 ->= 4 6 2 3 , 1 7 4 5 ->= 4 6 7 4 , 8 1 2 7 ->= 8 4 5 0 , 1 7 1 7 ->= 4 6 2 7 , 8 1 2 2 ->= 8 4 5 6 , 1 7 1 2 ->= 4 6 2 2 , 1 7 4 6 ->= 4 6 7 1 , 7 1 2 3 ->= 7 4 5 5 , 2 7 1 3 ->= 3 6 2 3 , 2 7 4 5 ->= 3 6 7 4 , 7 1 2 7 ->= 7 4 5 0 , 2 7 1 7 ->= 3 6 2 7 , 7 1 2 2 ->= 7 4 5 6 , 2 7 1 2 ->= 3 6 2 2 , 2 7 4 6 ->= 3 6 7 1 } The system is trivially terminating.