/export/starexec/sandbox/solver/bin/starexec_run_default /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES After renaming modulo { b->0, c->1, a->2 }, it remains to prove termination of the 6-rule system { 0 0 0 -> 1 2 1 , 2 2 1 -> 2 0 2 , 2 2 1 -> 1 0 1 , 1 0 0 ->= 0 0 1 , 1 1 1 ->= 0 0 1 , 2 2 2 ->= 2 0 1 } The system was reversed. After renaming modulo { 0->0, 1->1, 2->2 }, it remains to prove termination of the 6-rule system { 0 0 0 -> 1 2 1 , 1 2 2 -> 2 0 2 , 1 2 2 -> 1 0 1 , 0 0 1 ->= 1 0 0 , 1 1 1 ->= 1 0 0 , 2 2 2 ->= 1 0 2 } Applying context closure of depth 1 in the following form: System R over Sigma maps to { fold(xly) -> fold(xry) | l -> r in R, x,y in Sigma } over Sigma^2, where fold(a_1...a_n) = (a_1,a_2)...(a_{n-1},a_{n}) After renaming modulo { [0, 0]->0, [0, 1]->1, [1, 2]->2, [2, 1]->3, [1, 0]->4, [2, 2]->5, [2, 0]->6, [0, 2]->7, [1, 1]->8 }, it remains to prove termination of the 54-rule system { 0 0 0 0 -> 1 2 3 4 , 1 2 5 6 -> 7 6 7 6 , 1 2 5 6 -> 1 4 1 4 , 0 0 1 4 ->= 1 4 0 0 , 1 8 8 4 ->= 1 4 0 0 , 7 5 5 6 ->= 1 4 7 6 , 0 0 0 1 -> 1 2 3 8 , 1 2 5 3 -> 7 6 7 3 , 1 2 5 3 -> 1 4 1 8 , 0 0 1 8 ->= 1 4 0 1 , 1 8 8 8 ->= 1 4 0 1 , 7 5 5 3 ->= 1 4 7 3 , 0 0 0 7 -> 1 2 3 2 , 1 2 5 5 -> 7 6 7 5 , 1 2 5 5 -> 1 4 1 2 , 0 0 1 2 ->= 1 4 0 7 , 1 8 8 2 ->= 1 4 0 7 , 7 5 5 5 ->= 1 4 7 5 , 4 0 0 0 -> 8 2 3 4 , 8 2 5 6 -> 2 6 7 6 , 8 2 5 6 -> 8 4 1 4 , 4 0 1 4 ->= 8 4 0 0 , 8 8 8 4 ->= 8 4 0 0 , 2 5 5 6 ->= 8 4 7 6 , 4 0 0 1 -> 8 2 3 8 , 8 2 5 3 -> 2 6 7 3 , 8 2 5 3 -> 8 4 1 8 , 4 0 1 8 ->= 8 4 0 1 , 8 8 8 8 ->= 8 4 0 1 , 2 5 5 3 ->= 8 4 7 3 , 4 0 0 7 -> 8 2 3 2 , 8 2 5 5 -> 2 6 7 5 , 8 2 5 5 -> 8 4 1 2 , 4 0 1 2 ->= 8 4 0 7 , 8 8 8 2 ->= 8 4 0 7 , 2 5 5 5 ->= 8 4 7 5 , 6 0 0 0 -> 3 2 3 4 , 3 2 5 6 -> 5 6 7 6 , 3 2 5 6 -> 3 4 1 4 , 6 0 1 4 ->= 3 4 0 0 , 3 8 8 4 ->= 3 4 0 0 , 5 5 5 6 ->= 3 4 7 6 , 6 0 0 1 -> 3 2 3 8 , 3 2 5 3 -> 5 6 7 3 , 3 2 5 3 -> 3 4 1 8 , 6 0 1 8 ->= 3 4 0 1 , 3 8 8 8 ->= 3 4 0 1 , 5 5 5 3 ->= 3 4 7 3 , 6 0 0 7 -> 3 2 3 2 , 3 2 5 5 -> 5 6 7 5 , 3 2 5 5 -> 3 4 1 2 , 6 0 1 2 ->= 3 4 0 7 , 3 8 8 2 ->= 3 4 0 7 , 5 5 5 5 ->= 3 4 7 5 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 0 | | 0 1 | \ / 1 is interpreted by / \ | 1 0 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 0 | | 0 1 | \ / 4 is interpreted by / \ | 1 0 | | 0 1 | \ / 5 is interpreted by / \ | 1 1 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 0->0, 1->1, 2->2, 3->3, 4->4, 8->5, 7->6, 6->7, 5->8 }, it remains to prove termination of the 30-rule system { 0 0 0 0 -> 1 2 3 4 , 0 0 1 4 ->= 1 4 0 0 , 1 5 5 4 ->= 1 4 0 0 , 0 0 0 1 -> 1 2 3 5 , 0 0 1 5 ->= 1 4 0 1 , 1 5 5 5 ->= 1 4 0 1 , 0 0 0 6 -> 1 2 3 2 , 0 0 1 2 ->= 1 4 0 6 , 1 5 5 2 ->= 1 4 0 6 , 4 0 0 0 -> 5 2 3 4 , 4 0 1 4 ->= 5 4 0 0 , 5 5 5 4 ->= 5 4 0 0 , 4 0 0 1 -> 5 2 3 5 , 4 0 1 5 ->= 5 4 0 1 , 5 5 5 5 ->= 5 4 0 1 , 4 0 0 6 -> 5 2 3 2 , 4 0 1 2 ->= 5 4 0 6 , 5 5 5 2 ->= 5 4 0 6 , 7 0 0 0 -> 3 2 3 4 , 3 2 8 7 -> 8 7 6 7 , 7 0 1 4 ->= 3 4 0 0 , 3 5 5 4 ->= 3 4 0 0 , 7 0 0 1 -> 3 2 3 5 , 3 2 8 3 -> 8 7 6 3 , 7 0 1 5 ->= 3 4 0 1 , 3 5 5 5 ->= 3 4 0 1 , 7 0 0 6 -> 3 2 3 2 , 3 2 8 8 -> 8 7 6 8 , 7 0 1 2 ->= 3 4 0 6 , 3 5 5 2 ->= 3 4 0 6 } The system was filtered by the following matrix interpretation of type E_J with J = {1,...,2} and dimension 2: 0 is interpreted by / \ | 1 2 | | 0 1 | \ / 1 is interpreted by / \ | 1 4 | | 0 1 | \ / 2 is interpreted by / \ | 1 0 | | 0 1 | \ / 3 is interpreted by / \ | 1 1 | | 0 1 | \ / 4 is interpreted by / \ | 1 1 | | 0 1 | \ / 5 is interpreted by / \ | 1 3 | | 0 1 | \ / 6 is interpreted by / \ | 1 0 | | 0 1 | \ / 7 is interpreted by / \ | 1 0 | | 0 1 | \ / 8 is interpreted by / \ | 1 0 | | 0 1 | \ / After renaming modulo { 0->0, 1->1, 4->2, 5->3 }, it remains to prove termination of the 4-rule system { 0 0 1 2 ->= 1 2 0 0 , 0 0 1 3 ->= 1 2 0 1 , 2 0 1 2 ->= 3 2 0 0 , 2 0 1 3 ->= 3 2 0 1 } The system is trivially terminating.