/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination w.r.t. Q of the given QTRS could be proven: (0) QTRS (1) DependencyPairsProof [EQUIVALENT, 77 ms] (2) QDP (3) DependencyGraphProof [EQUIVALENT, 0 ms] (4) AND (5) QDP (6) UsableRulesProof [EQUIVALENT, 0 ms] (7) QDP (8) QReductionProof [EQUIVALENT, 0 ms] (9) QDP (10) QDPSizeChangeProof [EQUIVALENT, 0 ms] (11) YES (12) QDP (13) UsableRulesProof [EQUIVALENT, 0 ms] (14) QDP (15) QReductionProof [EQUIVALENT, 0 ms] (16) QDP (17) QDPSizeChangeProof [EQUIVALENT, 0 ms] (18) YES (19) QDP (20) UsableRulesProof [EQUIVALENT, 0 ms] (21) QDP (22) QReductionProof [EQUIVALENT, 0 ms] (23) QDP (24) QDPSizeChangeProof [EQUIVALENT, 0 ms] (25) YES (26) QDP (27) UsableRulesProof [EQUIVALENT, 0 ms] (28) QDP (29) QReductionProof [EQUIVALENT, 0 ms] (30) QDP (31) QDPSizeChangeProof [EQUIVALENT, 0 ms] (32) YES (33) QDP (34) UsableRulesProof [EQUIVALENT, 0 ms] (35) QDP (36) QReductionProof [EQUIVALENT, 0 ms] (37) QDP (38) QDPSizeChangeProof [EQUIVALENT, 0 ms] (39) YES (40) QDP (41) UsableRulesProof [EQUIVALENT, 0 ms] (42) QDP (43) QReductionProof [EQUIVALENT, 0 ms] (44) QDP (45) QDPSizeChangeProof [EQUIVALENT, 0 ms] (46) YES (47) QDP (48) UsableRulesProof [EQUIVALENT, 0 ms] (49) QDP (50) QDPOrderProof [EQUIVALENT, 68 ms] (51) QDP (52) QDPOrderProof [EQUIVALENT, 9 ms] (53) QDP (54) QDPOrderProof [EQUIVALENT, 37 ms] (55) QDP (56) DependencyGraphProof [EQUIVALENT, 0 ms] (57) QDP (58) UsableRulesProof [EQUIVALENT, 0 ms] (59) QDP (60) QReductionProof [EQUIVALENT, 0 ms] (61) QDP (62) QDPSizeChangeProof [EQUIVALENT, 0 ms] (63) YES ---------------------------------------- (0) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (1) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (2) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(fst(0, Z)) -> MARK(nil) ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) ACTIVE(fst(s(X), cons(Y, Z))) -> CONS(Y, fst(X, Z)) ACTIVE(fst(s(X), cons(Y, Z))) -> FST(X, Z) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) ACTIVE(from(X)) -> CONS(X, from(s(X))) ACTIVE(from(X)) -> FROM(s(X)) ACTIVE(from(X)) -> S(X) ACTIVE(add(0, X)) -> MARK(X) ACTIVE(add(s(X), Y)) -> MARK(s(add(X, Y))) ACTIVE(add(s(X), Y)) -> S(add(X, Y)) ACTIVE(add(s(X), Y)) -> ADD(X, Y) ACTIVE(len(nil)) -> MARK(0) ACTIVE(len(cons(X, Z))) -> MARK(s(len(Z))) ACTIVE(len(cons(X, Z))) -> S(len(Z)) ACTIVE(len(cons(X, Z))) -> LEN(Z) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(fst(X1, X2)) -> FST(mark(X1), mark(X2)) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(0) -> ACTIVE(0) MARK(nil) -> ACTIVE(nil) MARK(s(X)) -> ACTIVE(s(X)) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> CONS(mark(X1), X2) MARK(cons(X1, X2)) -> MARK(X1) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> FROM(mark(X)) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> ADD(mark(X1), mark(X2)) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> LEN(mark(X)) MARK(len(X)) -> MARK(X) FST(mark(X1), X2) -> FST(X1, X2) FST(X1, mark(X2)) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) S(mark(X)) -> S(X) S(active(X)) -> S(X) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) FROM(mark(X)) -> FROM(X) FROM(active(X)) -> FROM(X) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) LEN(mark(X)) -> LEN(X) LEN(active(X)) -> LEN(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (3) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 21 less nodes. ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(active(X)) -> LEN(X) LEN(mark(X)) -> LEN(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (6) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (7) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(active(X)) -> LEN(X) LEN(mark(X)) -> LEN(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (8) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (9) Obligation: Q DP problem: The TRS P consists of the following rules: LEN(active(X)) -> LEN(X) LEN(mark(X)) -> LEN(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (10) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *LEN(active(X)) -> LEN(X) The graph contains the following edges 1 > 1 *LEN(mark(X)) -> LEN(X) The graph contains the following edges 1 > 1 ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (13) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (14) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (15) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (16) Obligation: Q DP problem: The TRS P consists of the following rules: ADD(X1, mark(X2)) -> ADD(X1, X2) ADD(mark(X1), X2) -> ADD(X1, X2) ADD(active(X1), X2) -> ADD(X1, X2) ADD(X1, active(X2)) -> ADD(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (17) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *ADD(X1, mark(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *ADD(mark(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(active(X1), X2) -> ADD(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *ADD(X1, active(X2)) -> ADD(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (20) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (21) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (22) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (23) Obligation: Q DP problem: The TRS P consists of the following rules: FROM(active(X)) -> FROM(X) FROM(mark(X)) -> FROM(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (24) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FROM(active(X)) -> FROM(X) The graph contains the following edges 1 > 1 *FROM(mark(X)) -> FROM(X) The graph contains the following edges 1 > 1 ---------------------------------------- (25) YES ---------------------------------------- (26) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (27) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (28) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (29) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (30) Obligation: Q DP problem: The TRS P consists of the following rules: CONS(X1, mark(X2)) -> CONS(X1, X2) CONS(mark(X1), X2) -> CONS(X1, X2) CONS(active(X1), X2) -> CONS(X1, X2) CONS(X1, active(X2)) -> CONS(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (31) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *CONS(X1, mark(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *CONS(mark(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(active(X1), X2) -> CONS(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *CONS(X1, active(X2)) -> CONS(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (32) YES ---------------------------------------- (33) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (34) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (35) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (36) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (37) Obligation: Q DP problem: The TRS P consists of the following rules: S(active(X)) -> S(X) S(mark(X)) -> S(X) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (38) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *S(active(X)) -> S(X) The graph contains the following edges 1 > 1 *S(mark(X)) -> S(X) The graph contains the following edges 1 > 1 ---------------------------------------- (39) YES ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: FST(X1, mark(X2)) -> FST(X1, X2) FST(mark(X1), X2) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (42) Obligation: Q DP problem: The TRS P consists of the following rules: FST(X1, mark(X2)) -> FST(X1, X2) FST(mark(X1), X2) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (43) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (44) Obligation: Q DP problem: The TRS P consists of the following rules: FST(X1, mark(X2)) -> FST(X1, X2) FST(mark(X1), X2) -> FST(X1, X2) FST(active(X1), X2) -> FST(X1, X2) FST(X1, active(X2)) -> FST(X1, X2) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (45) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *FST(X1, mark(X2)) -> FST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 *FST(mark(X1), X2) -> FST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FST(active(X1), X2) -> FST(X1, X2) The graph contains the following edges 1 > 1, 2 >= 2 *FST(X1, active(X2)) -> FST(X1, X2) The graph contains the following edges 1 >= 1, 2 > 2 ---------------------------------------- (46) YES ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) ACTIVE(add(0, X)) -> MARK(X) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: active(fst(0, Z)) -> mark(nil) active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) fst(mark(X1), X2) -> fst(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) cons(mark(X1), X2) -> cons(X1, X2) cons(X1, mark(X2)) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) add(mark(X1), X2) -> add(X1, X2) add(X1, mark(X2)) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(mark(X)) -> len(X) len(active(X)) -> len(X) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) ACTIVE(add(0, X)) -> MARK(X) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(fst(s(X), cons(Y, Z))) -> MARK(cons(Y, fst(X, Z))) ACTIVE(add(0, X)) -> MARK(X) MARK(fst(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> MARK(X2) MARK(add(X1, X2)) -> MARK(X1) MARK(add(X1, X2)) -> MARK(X2) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. ACTIVE(x1) = x1 fst(x1, x2) = fst(x1, x2) s(x1) = s cons(x1, x2) = x1 MARK(x1) = x1 mark(x1) = x1 from(x1) = x1 add(x1, x2) = add(x1, x2) 0 = 0 len(x1) = x1 active(x1) = x1 nil = nil Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=6 fst_2=3 add_2=1 nil=8 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) ---------------------------------------- (51) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) MARK(len(X)) -> MARK(X) The TRS R consists of the following rules: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (52) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. MARK(len(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = x1 fst(x1, x2) = x2 add(x1, x2) = add(x2) len(x1) = len(x1) active(x1) = x1 0 = 0 nil = nil s(x1) = s Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=3 len_1=4 add_1=3 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) ---------------------------------------- (53) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(cons(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(from(X)) -> MARK(X) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) The TRS R consists of the following rules: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (54) QDPOrderProof (EQUIVALENT) We use the reduction pair processor [LPAR04,JAR06]. The following pairs can be oriented strictly and are deleted. ACTIVE(from(X)) -> MARK(cons(X, from(s(X)))) MARK(from(X)) -> MARK(X) The remaining pairs can at least be oriented weakly. Used ordering: Combined order from the following AFS and order. MARK(x1) = x1 cons(x1, x2) = x1 ACTIVE(x1) = x1 mark(x1) = x1 from(x1) = from(x1) fst(x1, x2) = x2 add(x1, x2) = add(x2) len(x1) = len active(x1) = x1 0 = 0 nil = nil s(x1) = s Knuth-Bendix order [KBO] with precedence:trivial and weight map: s=3 0=3 from_1=1 len=5 add_1=3 nil=1 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) ---------------------------------------- (55) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> ACTIVE(cons(mark(X1), X2)) MARK(cons(X1, X2)) -> MARK(X1) MARK(fst(X1, X2)) -> ACTIVE(fst(mark(X1), mark(X2))) MARK(from(X)) -> ACTIVE(from(mark(X))) MARK(add(X1, X2)) -> ACTIVE(add(mark(X1), mark(X2))) MARK(len(X)) -> ACTIVE(len(mark(X))) The TRS R consists of the following rules: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (56) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes. ---------------------------------------- (57) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) The TRS R consists of the following rules: active(fst(s(X), cons(Y, Z))) -> mark(cons(Y, fst(X, Z))) mark(cons(X1, X2)) -> active(cons(mark(X1), X2)) active(from(X)) -> mark(cons(X, from(s(X)))) active(add(0, X)) -> mark(X) mark(fst(X1, X2)) -> active(fst(mark(X1), mark(X2))) mark(from(X)) -> active(from(mark(X))) mark(add(X1, X2)) -> active(add(mark(X1), mark(X2))) mark(len(X)) -> active(len(mark(X))) mark(0) -> active(0) mark(nil) -> active(nil) mark(s(X)) -> active(s(X)) len(active(X)) -> len(X) len(mark(X)) -> len(X) active(fst(0, Z)) -> mark(nil) active(add(s(X), Y)) -> mark(s(add(X, Y))) active(len(nil)) -> mark(0) active(len(cons(X, Z))) -> mark(s(len(Z))) cons(X1, mark(X2)) -> cons(X1, X2) cons(mark(X1), X2) -> cons(X1, X2) cons(active(X1), X2) -> cons(X1, X2) cons(X1, active(X2)) -> cons(X1, X2) fst(X1, mark(X2)) -> fst(X1, X2) fst(mark(X1), X2) -> fst(X1, X2) fst(active(X1), X2) -> fst(X1, X2) fst(X1, active(X2)) -> fst(X1, X2) from(active(X)) -> from(X) from(mark(X)) -> from(X) add(X1, mark(X2)) -> add(X1, X2) add(mark(X1), X2) -> add(X1, X2) add(active(X1), X2) -> add(X1, X2) add(X1, active(X2)) -> add(X1, X2) The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (58) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (59) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (60) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. active(fst(0, x0)) active(fst(s(x0), cons(x1, x2))) active(from(x0)) active(add(0, x0)) active(add(s(x0), x1)) active(len(nil)) active(len(cons(x0, x1))) mark(fst(x0, x1)) mark(0) mark(nil) mark(s(x0)) mark(cons(x0, x1)) mark(from(x0)) mark(add(x0, x1)) mark(len(x0)) fst(mark(x0), x1) fst(x0, mark(x1)) fst(active(x0), x1) fst(x0, active(x1)) s(mark(x0)) s(active(x0)) from(mark(x0)) from(active(x0)) add(mark(x0), x1) add(x0, mark(x1)) add(active(x0), x1) add(x0, active(x1)) len(mark(x0)) len(active(x0)) ---------------------------------------- (61) Obligation: Q DP problem: The TRS P consists of the following rules: MARK(cons(X1, X2)) -> MARK(X1) R is empty. The set Q consists of the following terms: cons(mark(x0), x1) cons(x0, mark(x1)) cons(active(x0), x1) cons(x0, active(x1)) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (62) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *MARK(cons(X1, X2)) -> MARK(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (63) YES