/export/starexec/sandbox/solver/bin/starexec_run_Itrs /export/starexec/sandbox/benchmark/theBenchmark.itrs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = eval#(x, y, z) -> eval#(x, y, z) [y > z && z >= x && z >= y] eval#(I0, I1, I2) -> eval#(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] eval#(I6, I7, I8) -> eval#(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] R = eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] The dependency graph for this problem is: 0 -> 1 -> 2 -> 2 3 -> 4 -> 2, 4, 5 5 -> 2, 4, 5 Where: 0) eval#(x, y, z) -> eval#(x, y, z) [y > z && z >= x && z >= y] 1) eval#(I0, I1, I2) -> eval#(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] 2) eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] 3) eval#(I6, I7, I8) -> eval#(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] 4) eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] 5) eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] We have the following SCCs. { 4, 5 } { 2 } DP problem for innermost termination. P = eval#(I3, I4, I5) -> eval#(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] R = eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2,z3)] = z2 + -1 * z3 This gives the following inequalities: I4 > I5 && I5 >= I3 ==> I4 + -1 * I5 > I4 - 1 + -1 * I5 with I4 + -1 * I5 >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed. DP problem for innermost termination. P = eval#(I9, I10, I11) -> eval#(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] eval#(I12, I13, I14) -> eval#(I12 - 1, I13, I14) [I12 > I14] R = eval(x, y, z) -> eval(x, y, z) [y > z && z >= x && z >= y] eval(I0, I1, I2) -> eval(I0, I1, I2) [I0 > I2 && I2 >= I0 && I2 >= I1] eval(I3, I4, I5) -> eval(I3, I4 - 1, I5) [I4 > I5 && I5 >= I3] eval(I6, I7, I8) -> eval(I6, I7 - 1, I8) [I6 > I8 && I8 >= I6 && I7 > I8] eval(I9, I10, I11) -> eval(I9 - 1, I10, I11) [I10 > I11 && I9 > I11] eval(I12, I13, I14) -> eval(I12 - 1, I13, I14) [I12 > I14] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2,z3)] = z1 + -1 * z3 This gives the following inequalities: I10 > I11 && I9 > I11 ==> I9 + -1 * I11 > I9 - 1 + -1 * I11 with I9 + -1 * I11 >= 0 I12 > I14 ==> I12 + -1 * I14 > I12 - 1 + -1 * I14 with I12 + -1 * I14 >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.