/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.itrs /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.itrs # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Termination of the given ITRS could be proven: (0) ITRS (1) ITRStoIDPProof [EQUIVALENT, 0 ms] (2) IDP (3) UsableRulesProof [EQUIVALENT, 0 ms] (4) IDP (5) IDependencyGraphProof [EQUIVALENT, 0 ms] (6) IDP (7) IDPNonInfProof [SOUND, 245 ms] (8) AND (9) IDP (10) IDependencyGraphProof [EQUIVALENT, 0 ms] (11) TRUE (12) IDP (13) IDependencyGraphProof [EQUIVALENT, 0 ms] (14) TRUE ---------------------------------------- (0) Obligation: ITRS problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The TRS R consists of the following rules: f(TRUE, x, y) -> fNat(x >= 0 && y >= 0, x, y) fNat(TRUE, x, y) -> f(x > y, x, round(y + 1)) round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (1) ITRStoIDPProof (EQUIVALENT) Added dependency pairs ---------------------------------------- (2) Obligation: IDP problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The following domains are used: Boolean, Integer The ITRS R consists of the following rules: f(TRUE, x, y) -> fNat(x >= 0 && y >= 0, x, y) fNat(TRUE, x, y) -> f(x > y, x, round(y + 1)) round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The integer pair graph contains the following rules and edges: (0): F(TRUE, x[0], y[0]) -> FNAT(x[0] >= 0 && y[0] >= 0, x[0], y[0]) (1): FNAT(TRUE, x[1], y[1]) -> F(x[1] > y[1], x[1], round(y[1] + 1)) (2): FNAT(TRUE, x[2], y[2]) -> ROUND(y[2] + 1) (3): ROUND(x[3]) -> IF(x[3] % 2 = 0, x[3], x[3] + 1) (0) -> (1), if (x[0] >= 0 && y[0] >= 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) (0) -> (2), if (x[0] >= 0 && y[0] >= 0 & x[0] ->^* x[2] & y[0] ->^* y[2]) (1) -> (0), if (x[1] > y[1] & x[1] ->^* x[0] & round(y[1] + 1) ->^* y[0]) (2) -> (3), if (y[2] + 1 ->^* x[3]) The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (3) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (4) Obligation: IDP problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The following domains are used: Integer, Boolean The ITRS R consists of the following rules: round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The integer pair graph contains the following rules and edges: (0): F(TRUE, x[0], y[0]) -> FNAT(x[0] >= 0 && y[0] >= 0, x[0], y[0]) (1): FNAT(TRUE, x[1], y[1]) -> F(x[1] > y[1], x[1], round(y[1] + 1)) (2): FNAT(TRUE, x[2], y[2]) -> ROUND(y[2] + 1) (3): ROUND(x[3]) -> IF(x[3] % 2 = 0, x[3], x[3] + 1) (0) -> (1), if (x[0] >= 0 && y[0] >= 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) (0) -> (2), if (x[0] >= 0 && y[0] >= 0 & x[0] ->^* x[2] & y[0] ->^* y[2]) (1) -> (0), if (x[1] > y[1] & x[1] ->^* x[0] & round(y[1] + 1) ->^* y[0]) (2) -> (3), if (y[2] + 1 ->^* x[3]) The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (5) IDependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes. ---------------------------------------- (6) Obligation: IDP problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The following domains are used: Integer, Boolean The ITRS R consists of the following rules: round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The integer pair graph contains the following rules and edges: (1): FNAT(TRUE, x[1], y[1]) -> F(x[1] > y[1], x[1], round(y[1] + 1)) (0): F(TRUE, x[0], y[0]) -> FNAT(x[0] >= 0 && y[0] >= 0, x[0], y[0]) (1) -> (0), if (x[1] > y[1] & x[1] ->^* x[0] & round(y[1] + 1) ->^* y[0]) (0) -> (1), if (x[0] >= 0 && y[0] >= 0 & x[0] ->^* x[1] & y[0] ->^* y[1]) The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (7) IDPNonInfProof (SOUND) Used the following options for this NonInfProof: IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@1bc48479 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 2 Max Right Steps: 1 The constraints were generated the following way: The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps: Note that final constraints are written in bold face. For Pair FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))) the following chains were created: *We consider the chain FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))), F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]), FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))), F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) which results in the following constraint: (1) (>(x[1], y[1])=TRUE & x[1]=x[0] & round(+(y[1], 1))=y[0] & &&(>=(x[0], 0), >=(y[0], 0))=TRUE & x[0]=x[1]1 & y[0]=y[1]1 & >(x[1]1, y[1]1)=TRUE & x[1]1=x[0]1 & round(+(y[1]1, 1))=y[0]1 ==> FNAT(TRUE, x[1]1, y[1]1)_>=_NonInfC & FNAT(TRUE, x[1]1, y[1]1)_>=_F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1))) & (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=)) We simplified constraint (1) using rules (III), (IV), (VII), (IDP_BOOLEAN), (REWRITING) which results in the following new constraint: (2) (>(x[1], y[1])=TRUE & >(x[1], y[0])=TRUE & =(%(+(y[1], 1), 2), 0)=x0 & +(y[1], 1)=x1 & +(+(y[1], 1), 1)=x2 & if(x0, x1, x2)=y[0] & >=(x[1], 0)=TRUE & >=(y[0], 0)=TRUE ==> FNAT(TRUE, x[1], y[0])_>=_NonInfC & FNAT(TRUE, x[1], y[0])_>=_F(>(x[1], y[0]), x[1], round(+(y[0], 1))) & (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=)) We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: (3) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]y[0] >= 0 & [-1] + [-1]x0 >= 0 & y[1] + [1] + [-1]x1 >= 0 & y[1] + [2] + [-1]x2 >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: (4) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]y[0] >= 0 & [-1] + [-1]x0 >= 0 & y[1] + [1] + [-1]x1 >= 0 & y[1] + [2] + [-1]x2 >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: (5) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]y[0] >= 0 & [-1] + [-1]x0 >= 0 & y[1] + [1] + [-1]x1 >= 0 & y[1] + [2] + [-1]x2 >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint: (6) (x[1] + [-1] + [-1]y[1] >= 0 & x[1] + [-1] + [-1]y[0] >= 0 & [-1] + x0 >= 0 & y[1] + [1] + [-1]x1 >= 0 & y[1] + [2] + [-1]x2 >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint: (7) (x[1] + [-1] + [-1]y[0] >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) For Pair F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) the following chains were created: *We consider the chain F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]), FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))) which results in the following constraint: (1) (&&(>=(x[0], 0), >=(y[0], 0))=TRUE & x[0]=x[1] & y[0]=y[1] ==> F(TRUE, x[0], y[0])_>=_NonInfC & F(TRUE, x[0], y[0])_>=_FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) & (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=)) We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint: (2) (>=(x[0], 0)=TRUE & >=(y[0], 0)=TRUE ==> F(TRUE, x[0], y[0])_>=_NonInfC & F(TRUE, x[0], y[0])_>=_FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) & (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=)) We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint: (3) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=) & [bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]y[0] + [bni_22]x[0] >= 0 & [1 + (-1)bso_23] >= 0) We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint: (4) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=) & [bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]y[0] + [bni_22]x[0] >= 0 & [1 + (-1)bso_23] >= 0) We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint: (5) (x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=) & [bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]y[0] + [bni_22]x[0] >= 0 & [1 + (-1)bso_23] >= 0) To summarize, we get the following constraints P__>=_ for the following pairs. *FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))) *(x[1] + [-1] + [-1]y[0] >= 0 & x[1] >= 0 & y[0] >= 0 ==> (U^Increasing(F(>(x[1]1, y[1]1), x[1]1, round(+(y[1]1, 1)))), >=) & [(-1)Bound*bni_20] + [bni_20]x[1] + [(-1)bni_20]y[0] >= 0 & [(-1)bso_21] >= 0) *F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) *(x[0] >= 0 & y[0] >= 0 ==> (U^Increasing(FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0])), >=) & [bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]y[0] + [bni_22]x[0] >= 0 & [1 + (-1)bso_23] >= 0) The constraints for P_> respective P_bound are constructed from P__>=_ where we just replace every occurence of "t _>=_ s" in P__>=_ by "t > s" respective "t _>=_ c". Here c stands for the fresh constant used for P_bound. Using the following integer polynomial ordering the resulting constraints can be solved Polynomial interpretation over integers[POLO]: POL(TRUE) = 0 POL(FALSE) = 0 POL(round(x_1)) = x_1 POL(if(x_1, x_2, x_3)) = [-1]max{[-1]x_3, [-1]x_2} POL(=(x_1, x_2)) = [-1] POL(2) = [2] POL(0) = 0 POL(+(x_1, x_2)) = x_1 + x_2 POL(1) = [1] POL(FNAT(x_1, x_2, x_3)) = x_2 + [-1]x_3 POL(F(x_1, x_2, x_3)) = [1] + [-1]x_3 + x_2 POL(>(x_1, x_2)) = [-1] POL(&&(x_1, x_2)) = [-1] POL(>=(x_1, x_2)) = [-1] The following pairs are in P_>: F(TRUE, x[0], y[0]) -> FNAT(&&(>=(x[0], 0), >=(y[0], 0)), x[0], y[0]) The following pairs are in P_bound: FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))) The following pairs are in P_>=: FNAT(TRUE, x[1], y[1]) -> F(>(x[1], y[1]), x[1], round(+(y[1], 1))) At least the following rules have been oriented under context sensitive arithmetic replacement: if(=(%(x, 2), 0), x, +(x, 1))^1 -> round(x)^1 u^1 -> if(TRUE, u, v)^1 v^1 -> if(FALSE, u, v)^1 ---------------------------------------- (8) Complex Obligation (AND) ---------------------------------------- (9) Obligation: IDP problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The following domains are used: Integer The ITRS R consists of the following rules: round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The integer pair graph contains the following rules and edges: (1): FNAT(TRUE, x[1], y[1]) -> F(x[1] > y[1], x[1], round(y[1] + 1)) The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (10) IDependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (11) TRUE ---------------------------------------- (12) Obligation: IDP problem: The following function symbols are pre-defined: <<< & ~ Bwand: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer != ~ Neq: (Integer, Integer) -> Boolean && ~ Land: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean = ~ Eq: (Integer, Integer) -> Boolean <= ~ Le: (Integer, Integer) -> Boolean ^ ~ Bwxor: (Integer, Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer > ~ Gt: (Integer, Integer) -> Boolean + ~ Add: (Integer, Integer) -> Integer -1 ~ UnaryMinus: (Integer) -> Integer < ~ Lt: (Integer, Integer) -> Boolean || ~ Lor: (Boolean, Boolean) -> Boolean - ~ Sub: (Integer, Integer) -> Integer ~ ~ Bwnot: (Integer) -> Integer * ~ Mul: (Integer, Integer) -> Integer >>> The following domains are used: Integer, Boolean The ITRS R consists of the following rules: round(x) -> if(x % 2 = 0, x, x + 1) if(TRUE, u, v) -> u if(FALSE, u, v) -> v The integer pair graph contains the following rules and edges: (0): F(TRUE, x[0], y[0]) -> FNAT(x[0] >= 0 && y[0] >= 0, x[0], y[0]) The set Q consists of the following terms: f(TRUE, x0, x1) fNat(TRUE, x0, x1) round(x0) if(TRUE, x0, x1) if(FALSE, x0, x1) ---------------------------------------- (13) IDependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. ---------------------------------------- (14) TRUE