/export/starexec/sandbox/solver/bin/starexec_run_Itrs /export/starexec/sandbox/benchmark/theBenchmark.itrs /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES DP problem for innermost termination. P = eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] eval#(I0, I1) -> eval#(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] eval#(I2, I3) -> eval#(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] R = eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] The dependency graph for this problem is: 0 -> 0, 3 1 -> 2 -> 3 -> 0, 3 Where: 0) eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] 1) eval#(I0, I1) -> eval#(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] 2) eval#(I2, I3) -> eval#(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] 3) eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] We have the following SCCs. { 0, 3 } DP problem for innermost termination. P = eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] eval#(I4, I5) -> eval#(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] R = eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2)] = z1 This gives the following inequalities: y > x && x > 0 && y > 0 && y >= x ==> x >= x I4 > I5 && I4 > 0 && I5 > 0 ==> I4 > I4 - I5 with I4 >= 0 We remove all the strictly oriented dependency pairs. DP problem for innermost termination. P = eval#(x, y) -> eval#(x, y - x) [y > x && x > 0 && y > 0 && y >= x] R = eval(x, y) -> eval(x, y - x) [y > x && x > 0 && y > 0 && y >= x] eval(I0, I1) -> eval(I0, I1 - I0) [I0 > I1 && I0 > 0 && I1 > 0 && I1 >= I0] eval(I2, I3) -> eval(I2 - I3, I3) [I3 > I2 && I2 > 0 && I3 > 0 && I2 > I3] eval(I4, I5) -> eval(I4 - I5, I5) [I4 > I5 && I4 > 0 && I5 > 0] We use the reverse value criterion with the projection function NU: NU[eval#(z1,z2)] = z2 + -1 * z1 This gives the following inequalities: y > x && x > 0 && y > 0 && y >= x ==> y + -1 * x > y - x + -1 * x with y + -1 * x >= 0 All dependency pairs are strictly oriented, so the entire dependency pair problem may be removed.