/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern gopher(g,a) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) MRRProof [EQUIVALENT, 5 ms] (12) QDP (13) PisEmptyProof [EQUIVALENT, 0 ms] (14) YES ---------------------------------------- (0) Obligation: Clauses: gopher(nil, nil). gopher(cons(nil, Y), cons(nil, Y)). gopher(cons(cons(U, V), W), X) :- gopher(cons(U, cons(V, W)), X). Query: gopher(g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: gopher_in_2: (b,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: gopher_in_ga(nil, nil) -> gopher_out_ga(nil, nil) gopher_in_ga(cons(nil, Y), cons(nil, Y)) -> gopher_out_ga(cons(nil, Y), cons(nil, Y)) gopher_in_ga(cons(cons(U, V), W), X) -> U1_ga(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) U1_ga(U, V, W, X, gopher_out_ga(cons(U, cons(V, W)), X)) -> gopher_out_ga(cons(cons(U, V), W), X) The argument filtering Pi contains the following mapping: gopher_in_ga(x1, x2) = gopher_in_ga(x1) nil = nil gopher_out_ga(x1, x2) = gopher_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4, x5) = U1_ga(x5) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: gopher_in_ga(nil, nil) -> gopher_out_ga(nil, nil) gopher_in_ga(cons(nil, Y), cons(nil, Y)) -> gopher_out_ga(cons(nil, Y), cons(nil, Y)) gopher_in_ga(cons(cons(U, V), W), X) -> U1_ga(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) U1_ga(U, V, W, X, gopher_out_ga(cons(U, cons(V, W)), X)) -> gopher_out_ga(cons(cons(U, V), W), X) The argument filtering Pi contains the following mapping: gopher_in_ga(x1, x2) = gopher_in_ga(x1) nil = nil gopher_out_ga(x1, x2) = gopher_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4, x5) = U1_ga(x5) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: GOPHER_IN_GA(cons(cons(U, V), W), X) -> U1_GA(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) GOPHER_IN_GA(cons(cons(U, V), W), X) -> GOPHER_IN_GA(cons(U, cons(V, W)), X) The TRS R consists of the following rules: gopher_in_ga(nil, nil) -> gopher_out_ga(nil, nil) gopher_in_ga(cons(nil, Y), cons(nil, Y)) -> gopher_out_ga(cons(nil, Y), cons(nil, Y)) gopher_in_ga(cons(cons(U, V), W), X) -> U1_ga(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) U1_ga(U, V, W, X, gopher_out_ga(cons(U, cons(V, W)), X)) -> gopher_out_ga(cons(cons(U, V), W), X) The argument filtering Pi contains the following mapping: gopher_in_ga(x1, x2) = gopher_in_ga(x1) nil = nil gopher_out_ga(x1, x2) = gopher_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4, x5) = U1_ga(x5) GOPHER_IN_GA(x1, x2) = GOPHER_IN_GA(x1) U1_GA(x1, x2, x3, x4, x5) = U1_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: GOPHER_IN_GA(cons(cons(U, V), W), X) -> U1_GA(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) GOPHER_IN_GA(cons(cons(U, V), W), X) -> GOPHER_IN_GA(cons(U, cons(V, W)), X) The TRS R consists of the following rules: gopher_in_ga(nil, nil) -> gopher_out_ga(nil, nil) gopher_in_ga(cons(nil, Y), cons(nil, Y)) -> gopher_out_ga(cons(nil, Y), cons(nil, Y)) gopher_in_ga(cons(cons(U, V), W), X) -> U1_ga(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) U1_ga(U, V, W, X, gopher_out_ga(cons(U, cons(V, W)), X)) -> gopher_out_ga(cons(cons(U, V), W), X) The argument filtering Pi contains the following mapping: gopher_in_ga(x1, x2) = gopher_in_ga(x1) nil = nil gopher_out_ga(x1, x2) = gopher_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4, x5) = U1_ga(x5) GOPHER_IN_GA(x1, x2) = GOPHER_IN_GA(x1) U1_GA(x1, x2, x3, x4, x5) = U1_GA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: GOPHER_IN_GA(cons(cons(U, V), W), X) -> GOPHER_IN_GA(cons(U, cons(V, W)), X) The TRS R consists of the following rules: gopher_in_ga(nil, nil) -> gopher_out_ga(nil, nil) gopher_in_ga(cons(nil, Y), cons(nil, Y)) -> gopher_out_ga(cons(nil, Y), cons(nil, Y)) gopher_in_ga(cons(cons(U, V), W), X) -> U1_ga(U, V, W, X, gopher_in_ga(cons(U, cons(V, W)), X)) U1_ga(U, V, W, X, gopher_out_ga(cons(U, cons(V, W)), X)) -> gopher_out_ga(cons(cons(U, V), W), X) The argument filtering Pi contains the following mapping: gopher_in_ga(x1, x2) = gopher_in_ga(x1) nil = nil gopher_out_ga(x1, x2) = gopher_out_ga(x2) cons(x1, x2) = cons(x1, x2) U1_ga(x1, x2, x3, x4, x5) = U1_ga(x5) GOPHER_IN_GA(x1, x2) = GOPHER_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: GOPHER_IN_GA(cons(cons(U, V), W), X) -> GOPHER_IN_GA(cons(U, cons(V, W)), X) R is empty. The argument filtering Pi contains the following mapping: cons(x1, x2) = cons(x1, x2) GOPHER_IN_GA(x1, x2) = GOPHER_IN_GA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: GOPHER_IN_GA(cons(cons(U, V), W)) -> GOPHER_IN_GA(cons(U, cons(V, W))) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) MRRProof (EQUIVALENT) By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. Strictly oriented dependency pairs: GOPHER_IN_GA(cons(cons(U, V), W)) -> GOPHER_IN_GA(cons(U, cons(V, W))) Used ordering: Polynomial interpretation [POLO]: POL(GOPHER_IN_GA(x_1)) = 2*x_1 POL(cons(x_1, x_2)) = 2 + 2*x_1 + x_2 ---------------------------------------- (12) Obligation: Q DP problem: P is empty. R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (13) PisEmptyProof (EQUIVALENT) The TRS P is empty. Hence, there is no (P,Q,R) chain. ---------------------------------------- (14) YES