/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- MAYBE proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern sublist(g,a) w.r.t. the given Prolog program could not be shown: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 14 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) AND (7) PiDP (8) UsableRulesProof [EQUIVALENT, 0 ms] (9) PiDP (10) PiDPToQDPProof [SOUND, 0 ms] (11) QDP (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] (13) YES (14) PiDP (15) UsableRulesProof [EQUIVALENT, 0 ms] (16) PiDP (17) PiDPToQDPProof [SOUND, 0 ms] (18) QDP (19) PrologToPiTRSProof [SOUND, 0 ms] (20) PiTRS (21) DependencyPairsProof [EQUIVALENT, 4 ms] (22) PiDP (23) DependencyGraphProof [EQUIVALENT, 0 ms] (24) AND (25) PiDP (26) UsableRulesProof [EQUIVALENT, 0 ms] (27) PiDP (28) PiDPToQDPProof [SOUND, 0 ms] (29) QDP (30) QDPSizeChangeProof [EQUIVALENT, 0 ms] (31) YES (32) PiDP (33) UsableRulesProof [EQUIVALENT, 0 ms] (34) PiDP (35) PiDPToQDPProof [SOUND, 0 ms] (36) QDP (37) PrologToTRSTransformerProof [SOUND, 0 ms] (38) QTRS (39) DependencyPairsProof [EQUIVALENT, 0 ms] (40) QDP (41) DependencyGraphProof [EQUIVALENT, 0 ms] (42) AND (43) QDP (44) MNOCProof [EQUIVALENT, 0 ms] (45) QDP (46) UsableRulesProof [EQUIVALENT, 0 ms] (47) QDP (48) QReductionProof [EQUIVALENT, 0 ms] (49) QDP (50) QDP (51) MNOCProof [EQUIVALENT, 0 ms] (52) QDP (53) UsableRulesProof [EQUIVALENT, 0 ms] (54) QDP (55) QReductionProof [EQUIVALENT, 0 ms] (56) QDP (57) PrologToDTProblemTransformerProof [SOUND, 0 ms] (58) TRIPLES (59) TriplesToPiDPProof [SOUND, 0 ms] (60) PiDP (61) DependencyGraphProof [EQUIVALENT, 0 ms] (62) AND (63) PiDP (64) UsableRulesProof [EQUIVALENT, 0 ms] (65) PiDP (66) PiDPToQDPProof [SOUND, 0 ms] (67) QDP (68) QDPSizeChangeProof [EQUIVALENT, 0 ms] (69) YES (70) PiDP (71) UsableRulesProof [EQUIVALENT, 0 ms] (72) PiDP (73) PiDPToQDPProof [SOUND, 0 ms] (74) QDP (75) PiDP (76) UsableRulesProof [EQUIVALENT, 0 ms] (77) PiDP (78) PrologToIRSwTTransformerProof [SOUND, 0 ms] (79) AND (80) IRSwT (81) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] (82) TRUE (83) IRSwT (84) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] (85) IRSwT (86) IntTRSCompressionProof [EQUIVALENT, 21 ms] (87) IRSwT (88) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (89) IRSwT (90) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (91) IRSwT (92) FilterProof [EQUIVALENT, 0 ms] (93) IntTRS (94) IntTRSNonPeriodicNontermProof [COMPLETE, 6 ms] (95) NO ---------------------------------------- (0) Obligation: Clauses: sublist(X, Y) :- ','(append(U, X, V), append(V, W, Y)). append([], Ys, Ys). append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs). Query: sublist(g,a) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: sublist_in_2: (b,f) append_in_3: (f,b,f) (b,f,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: SUBLIST_IN_GA(X, Y) -> U1_GA(X, Y, append_in_aga(U, X, V)) SUBLIST_IN_GA(X, Y) -> APPEND_IN_AGA(U, X, V) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> U3_AGA(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) U1_GA(X, Y, append_out_aga(U, X, V)) -> U2_GA(X, Y, append_in_gaa(V, W, Y)) U1_GA(X, Y, append_out_aga(U, X, V)) -> APPEND_IN_GAA(V, W, Y) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U3_GAA(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) SUBLIST_IN_GA(x1, x2) = SUBLIST_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x1, x3) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) U3_AGA(x1, x2, x3, x4, x5) = U3_AGA(x3, x5) U2_GA(x1, x2, x3) = U2_GA(x1, x3) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x2, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBLIST_IN_GA(X, Y) -> U1_GA(X, Y, append_in_aga(U, X, V)) SUBLIST_IN_GA(X, Y) -> APPEND_IN_AGA(U, X, V) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> U3_AGA(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) U1_GA(X, Y, append_out_aga(U, X, V)) -> U2_GA(X, Y, append_in_gaa(V, W, Y)) U1_GA(X, Y, append_out_aga(U, X, V)) -> APPEND_IN_GAA(V, W, Y) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U3_GAA(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) SUBLIST_IN_GA(x1, x2) = SUBLIST_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x1, x3) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) U3_AGA(x1, x2, x3, x4, x5) = U3_AGA(x3, x5) U2_GA(x1, x2, x3) = U2_GA(x1, x3) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x2, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. ---------------------------------------- (6) Complex Obligation (AND) ---------------------------------------- (7) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (8) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (9) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (10) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (11) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(Xs)) -> APPEND_IN_GAA(Xs) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (12) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND_IN_GAA(.(Xs)) -> APPEND_IN_GAA(Xs) The graph contains the following edges 1 > 1 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x1, x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x2, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x3, x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x1, x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa(x1) U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x2, x5) sublist_out_ga(x1, x2) = sublist_out_ga(x1) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (15) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (16) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (17) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (18) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(Ys) -> APPEND_IN_AGA(Ys) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (19) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: sublist_in_2: (b,f) append_in_3: (f,b,f) (b,f,f) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (20) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga ---------------------------------------- (21) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: SUBLIST_IN_GA(X, Y) -> U1_GA(X, Y, append_in_aga(U, X, V)) SUBLIST_IN_GA(X, Y) -> APPEND_IN_AGA(U, X, V) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> U3_AGA(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) U1_GA(X, Y, append_out_aga(U, X, V)) -> U2_GA(X, Y, append_in_gaa(V, W, Y)) U1_GA(X, Y, append_out_aga(U, X, V)) -> APPEND_IN_GAA(V, W, Y) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U3_GAA(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga SUBLIST_IN_GA(x1, x2) = SUBLIST_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) U3_AGA(x1, x2, x3, x4, x5) = U3_AGA(x5) U2_GA(x1, x2, x3) = U2_GA(x3) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (22) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBLIST_IN_GA(X, Y) -> U1_GA(X, Y, append_in_aga(U, X, V)) SUBLIST_IN_GA(X, Y) -> APPEND_IN_AGA(U, X, V) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> U3_AGA(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) U1_GA(X, Y, append_out_aga(U, X, V)) -> U2_GA(X, Y, append_in_gaa(V, W, Y)) U1_GA(X, Y, append_out_aga(U, X, V)) -> APPEND_IN_GAA(V, W, Y) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U3_GAA(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga SUBLIST_IN_GA(x1, x2) = SUBLIST_IN_GA(x1) U1_GA(x1, x2, x3) = U1_GA(x3) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) U3_AGA(x1, x2, x3, x4, x5) = U3_AGA(x5) U2_GA(x1, x2, x3) = U2_GA(x3) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (23) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. ---------------------------------------- (24) Complex Obligation (AND) ---------------------------------------- (25) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (26) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (27) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_GAA(Xs, Ys, Zs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPEND_IN_GAA(x1, x2, x3) = APPEND_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (28) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (29) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND_IN_GAA(.(Xs)) -> APPEND_IN_GAA(Xs) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (30) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPEND_IN_GAA(.(Xs)) -> APPEND_IN_GAA(Xs) The graph contains the following edges 1 > 1 ---------------------------------------- (31) YES ---------------------------------------- (32) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) The TRS R consists of the following rules: sublist_in_ga(X, Y) -> U1_ga(X, Y, append_in_aga(U, X, V)) append_in_aga([], Ys, Ys) -> append_out_aga([], Ys, Ys) append_in_aga(.(X, Xs), Ys, .(X, Zs)) -> U3_aga(X, Xs, Ys, Zs, append_in_aga(Xs, Ys, Zs)) U3_aga(X, Xs, Ys, Zs, append_out_aga(Xs, Ys, Zs)) -> append_out_aga(.(X, Xs), Ys, .(X, Zs)) U1_ga(X, Y, append_out_aga(U, X, V)) -> U2_ga(X, Y, append_in_gaa(V, W, Y)) append_in_gaa([], Ys, Ys) -> append_out_gaa([], Ys, Ys) append_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U3_gaa(X, Xs, Ys, Zs, append_in_gaa(Xs, Ys, Zs)) U3_gaa(X, Xs, Ys, Zs, append_out_gaa(Xs, Ys, Zs)) -> append_out_gaa(.(X, Xs), Ys, .(X, Zs)) U2_ga(X, Y, append_out_gaa(V, W, Y)) -> sublist_out_ga(X, Y) The argument filtering Pi contains the following mapping: sublist_in_ga(x1, x2) = sublist_in_ga(x1) U1_ga(x1, x2, x3) = U1_ga(x3) append_in_aga(x1, x2, x3) = append_in_aga(x2) append_out_aga(x1, x2, x3) = append_out_aga(x1, x3) U3_aga(x1, x2, x3, x4, x5) = U3_aga(x5) .(x1, x2) = .(x2) U2_ga(x1, x2, x3) = U2_ga(x3) append_in_gaa(x1, x2, x3) = append_in_gaa(x1) [] = [] append_out_gaa(x1, x2, x3) = append_out_gaa U3_gaa(x1, x2, x3, x4, x5) = U3_gaa(x5) sublist_out_ga(x1, x2) = sublist_out_ga APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (33) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (34) Obligation: Pi DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND_IN_AGA(Xs, Ys, Zs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPEND_IN_AGA(x1, x2, x3) = APPEND_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (35) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (36) Obligation: Q DP problem: The TRS P consists of the following rules: APPEND_IN_AGA(Ys) -> APPEND_IN_AGA(Ys) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (37) PrologToTRSTransformerProof (SOUND) Transformed Prolog program to TRS. { "root": 9, "program": { "directives": [], "clauses": [ [ "(sublist X Y)", "(',' (append U X V) (append V W Y))" ], [ "(append ([]) Ys Ys)", null ], [ "(append (. X Xs) Ys (. X Zs))", "(append Xs Ys Zs)" ] ] }, "graph": { "nodes": { "190": { "goal": [{ "clause": 1, "scope": 3, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "191": { "goal": [{ "clause": 2, "scope": 3, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "160": { "goal": [{ "clause": 2, "scope": 2, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "171": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X45 T26 X46)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T26"], "free": [ "X45", "X46" ], "exprvars": [] } }, "type": "Nodes", "194": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "162": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "195": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "196": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "164": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "197": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T44 X76 T45)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X76"], "exprvars": [] } }, "198": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "145": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "156": { "goal": [ { "clause": 1, "scope": 2, "term": "(append X13 T10 X14)" }, { "clause": 2, "scope": 2, "term": "(append X13 T10 X14)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "189": { "goal": [ { "clause": 1, "scope": 3, "term": "(append T16 X15 T12)" }, { "clause": 2, "scope": 3, "term": "(append T16 X15 T12)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "147": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "158": { "goal": [{ "clause": 1, "scope": 2, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "9": { "goal": [{ "clause": -1, "scope": -1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } }, "94": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (append X13 T10 X14) (append X14 X15 T12))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14", "X15" ], "exprvars": [] } }, "10": { "goal": [{ "clause": 0, "scope": 1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } } }, "edges": [ { "from": 9, "to": 10, "label": "CASE" }, { "from": 10, "to": 94, "label": "ONLY EVAL with clause\nsublist(X11, X12) :- ','(append(X13, X11, X14), append(X14, X15, X12)).\nand substitutionT1 -> T10,\nX11 -> T10,\nT2 -> T12,\nX12 -> T12,\nT11 -> T12" }, { "from": 94, "to": 145, "label": "SPLIT 1" }, { "from": 94, "to": 147, "label": "SPLIT 2\nnew knowledge:\nT10 is ground\nreplacements:X13 -> T15,\nX14 -> T16" }, { "from": 145, "to": 156, "label": "CASE" }, { "from": 147, "to": 189, "label": "CASE" }, { "from": 156, "to": 158, "label": "PARALLEL" }, { "from": 156, "to": 160, "label": "PARALLEL" }, { "from": 158, "to": 162, "label": "ONLY EVAL with clause\nappend([], X24, X24).\nand substitutionX13 -> [],\nT10 -> T22,\nX24 -> T22,\nX14 -> T22" }, { "from": 160, "to": 171, "label": "ONLY EVAL with clause\nappend(.(X40, X41), X42, .(X40, X43)) :- append(X41, X42, X43).\nand substitutionX40 -> X44,\nX41 -> X45,\nX13 -> .(X44, X45),\nT10 -> T26,\nX42 -> T26,\nX43 -> X46,\nX14 -> .(X44, X46)" }, { "from": 162, "to": 164, "label": "SUCCESS" }, { "from": 171, "to": 145, "label": "INSTANCE with matching:\nX13 -> X45\nT10 -> T26\nX14 -> X46" }, { "from": 189, "to": 190, "label": "PARALLEL" }, { "from": 189, "to": 191, "label": "PARALLEL" }, { "from": 190, "to": 194, "label": "EVAL with clause\nappend([], X60, X60).\nand substitutionT16 -> [],\nX15 -> T34,\nX60 -> T34,\nT12 -> T34,\nX61 -> T34" }, { "from": 190, "to": 195, "label": "EVAL-BACKTRACK" }, { "from": 191, "to": 197, "label": "EVAL with clause\nappend(.(X72, X73), X74, .(X72, X75)) :- append(X73, X74, X75).\nand substitutionX72 -> T41,\nX73 -> T44,\nT16 -> .(T41, T44),\nX15 -> X76,\nX74 -> X76,\nX75 -> T45,\nT12 -> .(T41, T45),\nT42 -> T44,\nT43 -> T45" }, { "from": 191, "to": 198, "label": "EVAL-BACKTRACK" }, { "from": 194, "to": 196, "label": "SUCCESS" }, { "from": 197, "to": 147, "label": "INSTANCE with matching:\nT16 -> T44\nX15 -> X76\nT12 -> T45" } ], "type": "Graph" } } ---------------------------------------- (38) Obligation: Q restricted rewrite system: The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 Q is empty. ---------------------------------------- (39) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. ---------------------------------------- (40) Obligation: Q DP problem: The TRS P consists of the following rules: F9_IN(T10) -> U1^1(f94_in(T10), T10) F9_IN(T10) -> F94_IN(T10) F145_IN(T26) -> U2^1(f145_in(T26), T26) F145_IN(T26) -> F145_IN(T26) F147_IN -> U3^1(f147_in) F147_IN -> F147_IN F94_IN(T10) -> U4^1(f145_in(T10), T10) F94_IN(T10) -> F145_IN(T10) U4^1(f145_out1, T10) -> U5^1(f147_in, T10) U4^1(f145_out1, T10) -> F147_IN The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (41) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes. ---------------------------------------- (42) Complex Obligation (AND) ---------------------------------------- (43) Obligation: Q DP problem: The TRS P consists of the following rules: F147_IN -> F147_IN The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (44) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (45) Obligation: Q DP problem: The TRS P consists of the following rules: F147_IN -> F147_IN The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 The set Q consists of the following terms: f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (46) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (47) Obligation: Q DP problem: The TRS P consists of the following rules: F147_IN -> F147_IN R is empty. The set Q consists of the following terms: f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (48) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) ---------------------------------------- (49) Obligation: Q DP problem: The TRS P consists of the following rules: F147_IN -> F147_IN R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (50) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(T26) -> F145_IN(T26) The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (51) MNOCProof (EQUIVALENT) We use the modular non-overlap check [LPAR04] to enlarge Q to all left-hand sides of R. ---------------------------------------- (52) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(T26) -> F145_IN(T26) The TRS R consists of the following rules: f9_in(T10) -> U1(f94_in(T10), T10) U1(f94_out1, T10) -> f9_out1 f145_in(T22) -> f145_out1 f145_in(T26) -> U2(f145_in(T26), T26) U2(f145_out1, T26) -> f145_out1 f147_in -> f147_out1 f147_in -> U3(f147_in) U3(f147_out1) -> f147_out1 f94_in(T10) -> U4(f145_in(T10), T10) U4(f145_out1, T10) -> U5(f147_in, T10) U5(f147_out1, T10) -> f94_out1 The set Q consists of the following terms: f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (53) UsableRulesProof (EQUIVALENT) As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. ---------------------------------------- (54) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(T26) -> F145_IN(T26) R is empty. The set Q consists of the following terms: f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (55) QReductionProof (EQUIVALENT) We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. f9_in(x0) U1(f94_out1, x0) f145_in(x0) U2(f145_out1, x0) f147_in U3(f147_out1) f94_in(x0) U4(f145_out1, x0) U5(f147_out1, x0) ---------------------------------------- (56) Obligation: Q DP problem: The TRS P consists of the following rules: F145_IN(T26) -> F145_IN(T26) R is empty. Q is empty. We have to consider all minimal (P,Q,R)-chains. ---------------------------------------- (57) PrologToDTProblemTransformerProof (SOUND) Built DT problem from termination graph DT10. { "root": 19, "program": { "directives": [], "clauses": [ [ "(sublist X Y)", "(',' (append U X V) (append V W Y))" ], [ "(append ([]) Ys Ys)", null ], [ "(append (. X Xs) Ys (. X Zs))", "(append Xs Ys Zs)" ] ] }, "graph": { "nodes": { "170": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes", "172": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "173": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "174": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T31 X49 T33)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T31"], "free": ["X49"], "exprvars": [] } }, "175": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "132": { "goal": [{ "clause": 1, "scope": 2, "term": "(',' (append X5 T5 X6) (append X6 X7 T7))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T5"], "free": [ "X5", "X6", "X7" ], "exprvars": [] } }, "133": { "goal": [{ "clause": 2, "scope": 2, "term": "(',' (append X5 T5 X6) (append X6 X7 T7))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T5"], "free": [ "X5", "X6", "X7" ], "exprvars": [] } }, "199": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "212": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T63 X130 T64)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X130"], "exprvars": [] } }, "213": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "19": { "goal": [{ "clause": -1, "scope": -1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } }, "180": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (append X76 T39 X77) (append (. X75 X77) X7 T7))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T39"], "free": [ "X7", "X75", "X76", "X77" ], "exprvars": [] } }, "184": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X76 T39 X77)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T39"], "free": [ "X76", "X77" ], "exprvars": [] } }, "185": { "goal": [{ "clause": -1, "scope": -1, "term": "(append (. X75 T42) X7 T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [ "X7", "X75" ], "exprvars": [] } }, "186": { "goal": [ { "clause": 1, "scope": 4, "term": "(append X76 T39 X77)" }, { "clause": 2, "scope": 4, "term": "(append X76 T39 X77)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T39"], "free": [ "X76", "X77" ], "exprvars": [] } }, "187": { "goal": [{ "clause": 1, "scope": 4, "term": "(append X76 T39 X77)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T39"], "free": [ "X76", "X77" ], "exprvars": [] } }, "122": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (append X5 T5 X6) (append X6 X7 T7))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T5"], "free": [ "X5", "X6", "X7" ], "exprvars": [] } }, "166": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T16 X7 T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": ["X7"], "exprvars": [] } }, "188": { "goal": [{ "clause": 2, "scope": 4, "term": "(append X76 T39 X77)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T39"], "free": [ "X76", "X77" ], "exprvars": [] } }, "167": { "goal": [ { "clause": 1, "scope": 3, "term": "(append T16 X7 T7)" }, { "clause": 2, "scope": 3, "term": "(append T16 X7 T7)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": ["X7"], "exprvars": [] } }, "200": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "222": { "goal": [ { "clause": 1, "scope": 6, "term": "(append T63 X130 T64)" }, { "clause": 2, "scope": 6, "term": "(append T63 X130 T64)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X130"], "exprvars": [] } }, "168": { "goal": [{ "clause": 1, "scope": 3, "term": "(append T16 X7 T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": ["X7"], "exprvars": [] } }, "201": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X107 T52 X108)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T52"], "free": [ "X107", "X108" ], "exprvars": [] } }, "223": { "goal": [{ "clause": 1, "scope": 6, "term": "(append T63 X130 T64)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X130"], "exprvars": [] } }, "125": { "goal": [ { "clause": 1, "scope": 2, "term": "(',' (append X5 T5 X6) (append X6 X7 T7))" }, { "clause": 2, "scope": 2, "term": "(',' (append X5 T5 X6) (append X6 X7 T7))" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T5"], "free": [ "X5", "X6", "X7" ], "exprvars": [] } }, "169": { "goal": [{ "clause": 2, "scope": 3, "term": "(append T16 X7 T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T16"], "free": ["X7"], "exprvars": [] } }, "202": { "goal": [ { "clause": 1, "scope": 5, "term": "(append (. X75 T42) X7 T7)" }, { "clause": 2, "scope": 5, "term": "(append (. X75 T42) X7 T7)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [ "X7", "X75" ], "exprvars": [] } }, "224": { "goal": [{ "clause": 2, "scope": 6, "term": "(append T63 X130 T64)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X130"], "exprvars": [] } }, "203": { "goal": [{ "clause": 2, "scope": 5, "term": "(append (. X75 T42) X7 T7)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [ "X7", "X75" ], "exprvars": [] } }, "225": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "226": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "227": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "228": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T81 X159 T82)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X159"], "exprvars": [] } }, "229": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "20": { "goal": [{ "clause": 0, "scope": 1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } } }, "edges": [ { "from": 19, "to": 20, "label": "CASE" }, { "from": 20, "to": 122, "label": "ONLY EVAL with clause\nsublist(X3, X4) :- ','(append(X5, X3, X6), append(X6, X7, X4)).\nand substitutionT1 -> T5,\nX3 -> T5,\nT2 -> T7,\nX4 -> T7,\nT6 -> T7" }, { "from": 122, "to": 125, "label": "CASE" }, { "from": 125, "to": 132, "label": "PARALLEL" }, { "from": 125, "to": 133, "label": "PARALLEL" }, { "from": 132, "to": 166, "label": "ONLY EVAL with clause\nappend([], X20, X20).\nand substitutionX5 -> [],\nT5 -> T16,\nX20 -> T16,\nX6 -> T16" }, { "from": 133, "to": 180, "label": "ONLY EVAL with clause\nappend(.(X71, X72), X73, .(X71, X74)) :- append(X72, X73, X74).\nand substitutionX71 -> X75,\nX72 -> X76,\nX5 -> .(X75, X76),\nT5 -> T39,\nX73 -> T39,\nX74 -> X77,\nX6 -> .(X75, X77)" }, { "from": 166, "to": 167, "label": "CASE" }, { "from": 167, "to": 168, "label": "PARALLEL" }, { "from": 167, "to": 169, "label": "PARALLEL" }, { "from": 168, "to": 170, "label": "EVAL with clause\nappend([], X33, X33).\nand substitutionT16 -> [],\nX7 -> T23,\nX33 -> T23,\nT7 -> T23,\nX34 -> T23" }, { "from": 168, "to": 172, "label": "EVAL-BACKTRACK" }, { "from": 169, "to": 174, "label": "EVAL with clause\nappend(.(X45, X46), X47, .(X45, X48)) :- append(X46, X47, X48).\nand substitutionX45 -> T30,\nX46 -> T31,\nT16 -> .(T30, T31),\nX7 -> X49,\nX47 -> X49,\nX48 -> T33,\nT7 -> .(T30, T33),\nT32 -> T33" }, { "from": 169, "to": 175, "label": "EVAL-BACKTRACK" }, { "from": 170, "to": 173, "label": "SUCCESS" }, { "from": 174, "to": 166, "label": "INSTANCE with matching:\nT16 -> T31\nX7 -> X49\nT7 -> T33" }, { "from": 180, "to": 184, "label": "SPLIT 1" }, { "from": 180, "to": 185, "label": "SPLIT 2\nnew knowledge:\nT39 is ground\nreplacements:X76 -> T41,\nX77 -> T42" }, { "from": 184, "to": 186, "label": "CASE" }, { "from": 185, "to": 202, "label": "CASE" }, { "from": 186, "to": 187, "label": "PARALLEL" }, { "from": 186, "to": 188, "label": "PARALLEL" }, { "from": 187, "to": 199, "label": "ONLY EVAL with clause\nappend([], X86, X86).\nand substitutionX76 -> [],\nT39 -> T48,\nX86 -> T48,\nX77 -> T48" }, { "from": 188, "to": 201, "label": "ONLY EVAL with clause\nappend(.(X102, X103), X104, .(X102, X105)) :- append(X103, X104, X105).\nand substitutionX102 -> X106,\nX103 -> X107,\nX76 -> .(X106, X107),\nT39 -> T52,\nX104 -> T52,\nX105 -> X108,\nX77 -> .(X106, X108)" }, { "from": 199, "to": 200, "label": "SUCCESS" }, { "from": 201, "to": 184, "label": "INSTANCE with matching:\nX76 -> X107\nT39 -> T52\nX77 -> X108" }, { "from": 202, "to": 203, "label": "BACKTRACK\nfor clause: append([], Ys, Ys)because of non-unification" }, { "from": 203, "to": 212, "label": "EVAL with clause\nappend(.(X125, X126), X127, .(X125, X128)) :- append(X126, X127, X128).\nand substitutionX75 -> T61,\nX125 -> T61,\nT42 -> T63,\nX126 -> T63,\nX7 -> X130,\nX127 -> X130,\nX129 -> T61,\nX128 -> T64,\nT7 -> .(T61, T64),\nT60 -> T63,\nT62 -> T64" }, { "from": 203, "to": 213, "label": "EVAL-BACKTRACK" }, { "from": 212, "to": 222, "label": "CASE" }, { "from": 222, "to": 223, "label": "PARALLEL" }, { "from": 222, "to": 224, "label": "PARALLEL" }, { "from": 223, "to": 225, "label": "EVAL with clause\nappend([], X143, X143).\nand substitutionT63 -> [],\nX130 -> T71,\nX143 -> T71,\nT64 -> T71,\nX144 -> T71" }, { "from": 223, "to": 226, "label": "EVAL-BACKTRACK" }, { "from": 224, "to": 228, "label": "EVAL with clause\nappend(.(X155, X156), X157, .(X155, X158)) :- append(X156, X157, X158).\nand substitutionX155 -> T78,\nX156 -> T81,\nT63 -> .(T78, T81),\nX130 -> X159,\nX157 -> X159,\nX158 -> T82,\nT64 -> .(T78, T82),\nT79 -> T81,\nT80 -> T82" }, { "from": 224, "to": 229, "label": "EVAL-BACKTRACK" }, { "from": 225, "to": 227, "label": "SUCCESS" }, { "from": 228, "to": 212, "label": "INSTANCE with matching:\nT63 -> T81\nX130 -> X159\nT64 -> T82" } ], "type": "Graph" } } ---------------------------------------- (58) Obligation: Triples: appendA(.(X1, X2), X3, .(X1, X4)) :- appendA(X2, X3, X4). appendB(.(X1, X2), X3, .(X1, X4)) :- appendB(X2, X3, X4). appendC(.(X1, X2), X3, .(X1, X4)) :- appendC(X2, X3, X4). sublistD(X1, X2) :- appendA(X1, X3, X2). sublistD(X1, X2) :- appendB(X3, X1, X4). sublistD(X1, .(X2, X3)) :- ','(appendcB(X4, X1, X5), appendC(X5, X6, X3)). Clauses: appendcA([], X1, X1). appendcA(.(X1, X2), X3, .(X1, X4)) :- appendcA(X2, X3, X4). appendcB([], X1, X1). appendcB(.(X1, X2), X3, .(X1, X4)) :- appendcB(X2, X3, X4). appendcC([], X1, X1). appendcC(.(X1, X2), X3, .(X1, X4)) :- appendcC(X2, X3, X4). Afs: sublistD(x1, x2) = sublistD(x1) ---------------------------------------- (59) TriplesToPiDPProof (SOUND) We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes: sublistD_in_2: (b,f) appendA_in_3: (b,f,f) appendB_in_3: (f,b,f) appendcB_in_3: (f,b,f) appendC_in_3: (b,f,f) Transforming TRIPLES into the following Term Rewriting System: Pi DP problem: The TRS P consists of the following rules: SUBLISTD_IN_GA(X1, X2) -> U4_GA(X1, X2, appendA_in_gaa(X1, X3, X2)) SUBLISTD_IN_GA(X1, X2) -> APPENDA_IN_GAA(X1, X3, X2) APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> U1_GAA(X1, X2, X3, X4, appendA_in_gaa(X2, X3, X4)) APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDA_IN_GAA(X2, X3, X4) SUBLISTD_IN_GA(X1, X2) -> U5_GA(X1, X2, appendB_in_aga(X3, X1, X4)) SUBLISTD_IN_GA(X1, X2) -> APPENDB_IN_AGA(X3, X1, X4) APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> U2_AGA(X1, X2, X3, X4, appendB_in_aga(X2, X3, X4)) APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> APPENDB_IN_AGA(X2, X3, X4) SUBLISTD_IN_GA(X1, .(X2, X3)) -> U6_GA(X1, X2, X3, appendcB_in_aga(X4, X1, X5)) U6_GA(X1, X2, X3, appendcB_out_aga(X4, X1, X5)) -> U7_GA(X1, X2, X3, appendC_in_gaa(X5, X6, X3)) U6_GA(X1, X2, X3, appendcB_out_aga(X4, X1, X5)) -> APPENDC_IN_GAA(X5, X6, X3) APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> U3_GAA(X1, X2, X3, X4, appendC_in_gaa(X2, X3, X4)) APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDC_IN_GAA(X2, X3, X4) The TRS R consists of the following rules: appendcB_in_aga([], X1, X1) -> appendcB_out_aga([], X1, X1) appendcB_in_aga(.(X1, X2), X3, .(X1, X4)) -> U10_aga(X1, X2, X3, X4, appendcB_in_aga(X2, X3, X4)) U10_aga(X1, X2, X3, X4, appendcB_out_aga(X2, X3, X4)) -> appendcB_out_aga(.(X1, X2), X3, .(X1, X4)) The argument filtering Pi contains the following mapping: appendA_in_gaa(x1, x2, x3) = appendA_in_gaa(x1) .(x1, x2) = .(x2) appendB_in_aga(x1, x2, x3) = appendB_in_aga(x2) appendcB_in_aga(x1, x2, x3) = appendcB_in_aga(x2) appendcB_out_aga(x1, x2, x3) = appendcB_out_aga(x1, x2, x3) U10_aga(x1, x2, x3, x4, x5) = U10_aga(x3, x5) appendC_in_gaa(x1, x2, x3) = appendC_in_gaa(x1) SUBLISTD_IN_GA(x1, x2) = SUBLISTD_IN_GA(x1) U4_GA(x1, x2, x3) = U4_GA(x1, x3) APPENDA_IN_GAA(x1, x2, x3) = APPENDA_IN_GAA(x1) U1_GAA(x1, x2, x3, x4, x5) = U1_GAA(x2, x5) U5_GA(x1, x2, x3) = U5_GA(x1, x3) APPENDB_IN_AGA(x1, x2, x3) = APPENDB_IN_AGA(x2) U2_AGA(x1, x2, x3, x4, x5) = U2_AGA(x3, x5) U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4) U7_GA(x1, x2, x3, x4) = U7_GA(x1, x4) APPENDC_IN_GAA(x1, x2, x3) = APPENDC_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x2, x5) We have to consider all (P,R,Pi)-chains Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES ---------------------------------------- (60) Obligation: Pi DP problem: The TRS P consists of the following rules: SUBLISTD_IN_GA(X1, X2) -> U4_GA(X1, X2, appendA_in_gaa(X1, X3, X2)) SUBLISTD_IN_GA(X1, X2) -> APPENDA_IN_GAA(X1, X3, X2) APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> U1_GAA(X1, X2, X3, X4, appendA_in_gaa(X2, X3, X4)) APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDA_IN_GAA(X2, X3, X4) SUBLISTD_IN_GA(X1, X2) -> U5_GA(X1, X2, appendB_in_aga(X3, X1, X4)) SUBLISTD_IN_GA(X1, X2) -> APPENDB_IN_AGA(X3, X1, X4) APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> U2_AGA(X1, X2, X3, X4, appendB_in_aga(X2, X3, X4)) APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> APPENDB_IN_AGA(X2, X3, X4) SUBLISTD_IN_GA(X1, .(X2, X3)) -> U6_GA(X1, X2, X3, appendcB_in_aga(X4, X1, X5)) U6_GA(X1, X2, X3, appendcB_out_aga(X4, X1, X5)) -> U7_GA(X1, X2, X3, appendC_in_gaa(X5, X6, X3)) U6_GA(X1, X2, X3, appendcB_out_aga(X4, X1, X5)) -> APPENDC_IN_GAA(X5, X6, X3) APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> U3_GAA(X1, X2, X3, X4, appendC_in_gaa(X2, X3, X4)) APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDC_IN_GAA(X2, X3, X4) The TRS R consists of the following rules: appendcB_in_aga([], X1, X1) -> appendcB_out_aga([], X1, X1) appendcB_in_aga(.(X1, X2), X3, .(X1, X4)) -> U10_aga(X1, X2, X3, X4, appendcB_in_aga(X2, X3, X4)) U10_aga(X1, X2, X3, X4, appendcB_out_aga(X2, X3, X4)) -> appendcB_out_aga(.(X1, X2), X3, .(X1, X4)) The argument filtering Pi contains the following mapping: appendA_in_gaa(x1, x2, x3) = appendA_in_gaa(x1) .(x1, x2) = .(x2) appendB_in_aga(x1, x2, x3) = appendB_in_aga(x2) appendcB_in_aga(x1, x2, x3) = appendcB_in_aga(x2) appendcB_out_aga(x1, x2, x3) = appendcB_out_aga(x1, x2, x3) U10_aga(x1, x2, x3, x4, x5) = U10_aga(x3, x5) appendC_in_gaa(x1, x2, x3) = appendC_in_gaa(x1) SUBLISTD_IN_GA(x1, x2) = SUBLISTD_IN_GA(x1) U4_GA(x1, x2, x3) = U4_GA(x1, x3) APPENDA_IN_GAA(x1, x2, x3) = APPENDA_IN_GAA(x1) U1_GAA(x1, x2, x3, x4, x5) = U1_GAA(x2, x5) U5_GA(x1, x2, x3) = U5_GA(x1, x3) APPENDB_IN_AGA(x1, x2, x3) = APPENDB_IN_AGA(x2) U2_AGA(x1, x2, x3, x4, x5) = U2_AGA(x3, x5) U6_GA(x1, x2, x3, x4) = U6_GA(x1, x4) U7_GA(x1, x2, x3, x4) = U7_GA(x1, x4) APPENDC_IN_GAA(x1, x2, x3) = APPENDC_IN_GAA(x1) U3_GAA(x1, x2, x3, x4, x5) = U3_GAA(x2, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (61) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 10 less nodes. ---------------------------------------- (62) Complex Obligation (AND) ---------------------------------------- (63) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDC_IN_GAA(X2, X3, X4) The TRS R consists of the following rules: appendcB_in_aga([], X1, X1) -> appendcB_out_aga([], X1, X1) appendcB_in_aga(.(X1, X2), X3, .(X1, X4)) -> U10_aga(X1, X2, X3, X4, appendcB_in_aga(X2, X3, X4)) U10_aga(X1, X2, X3, X4, appendcB_out_aga(X2, X3, X4)) -> appendcB_out_aga(.(X1, X2), X3, .(X1, X4)) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) appendcB_in_aga(x1, x2, x3) = appendcB_in_aga(x2) appendcB_out_aga(x1, x2, x3) = appendcB_out_aga(x1, x2, x3) U10_aga(x1, x2, x3, x4, x5) = U10_aga(x3, x5) APPENDC_IN_GAA(x1, x2, x3) = APPENDC_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (64) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (65) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDC_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDC_IN_GAA(X2, X3, X4) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPENDC_IN_GAA(x1, x2, x3) = APPENDC_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (66) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (67) Obligation: Q DP problem: The TRS P consists of the following rules: APPENDC_IN_GAA(.(X2)) -> APPENDC_IN_GAA(X2) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (68) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APPENDC_IN_GAA(.(X2)) -> APPENDC_IN_GAA(X2) The graph contains the following edges 1 > 1 ---------------------------------------- (69) YES ---------------------------------------- (70) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> APPENDB_IN_AGA(X2, X3, X4) The TRS R consists of the following rules: appendcB_in_aga([], X1, X1) -> appendcB_out_aga([], X1, X1) appendcB_in_aga(.(X1, X2), X3, .(X1, X4)) -> U10_aga(X1, X2, X3, X4, appendcB_in_aga(X2, X3, X4)) U10_aga(X1, X2, X3, X4, appendcB_out_aga(X2, X3, X4)) -> appendcB_out_aga(.(X1, X2), X3, .(X1, X4)) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) appendcB_in_aga(x1, x2, x3) = appendcB_in_aga(x2) appendcB_out_aga(x1, x2, x3) = appendcB_out_aga(x1, x2, x3) U10_aga(x1, x2, x3, x4, x5) = U10_aga(x3, x5) APPENDB_IN_AGA(x1, x2, x3) = APPENDB_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (71) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (72) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDB_IN_AGA(.(X1, X2), X3, .(X1, X4)) -> APPENDB_IN_AGA(X2, X3, X4) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPENDB_IN_AGA(x1, x2, x3) = APPENDB_IN_AGA(x2) We have to consider all (P,R,Pi)-chains ---------------------------------------- (73) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (74) Obligation: Q DP problem: The TRS P consists of the following rules: APPENDB_IN_AGA(X3) -> APPENDB_IN_AGA(X3) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (75) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDA_IN_GAA(X2, X3, X4) The TRS R consists of the following rules: appendcB_in_aga([], X1, X1) -> appendcB_out_aga([], X1, X1) appendcB_in_aga(.(X1, X2), X3, .(X1, X4)) -> U10_aga(X1, X2, X3, X4, appendcB_in_aga(X2, X3, X4)) U10_aga(X1, X2, X3, X4, appendcB_out_aga(X2, X3, X4)) -> appendcB_out_aga(.(X1, X2), X3, .(X1, X4)) The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) appendcB_in_aga(x1, x2, x3) = appendcB_in_aga(x2) appendcB_out_aga(x1, x2, x3) = appendcB_out_aga(x1, x2, x3) U10_aga(x1, x2, x3, x4, x5) = U10_aga(x3, x5) APPENDA_IN_GAA(x1, x2, x3) = APPENDA_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (76) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (77) Obligation: Pi DP problem: The TRS P consists of the following rules: APPENDA_IN_GAA(.(X1, X2), X3, .(X1, X4)) -> APPENDA_IN_GAA(X2, X3, X4) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x2) APPENDA_IN_GAA(x1, x2, x3) = APPENDA_IN_GAA(x1) We have to consider all (P,R,Pi)-chains ---------------------------------------- (78) PrologToIRSwTTransformerProof (SOUND) Transformed Prolog program to IRSwT according to method in Master Thesis of A. Weinert { "root": 6, "program": { "directives": [], "clauses": [ [ "(sublist X Y)", "(',' (append U X V) (append V W Y))" ], [ "(append ([]) Ys Ys)", null ], [ "(append (. X Xs) Ys (. X Zs))", "(append Xs Ys Zs)" ] ] }, "graph": { "nodes": { "11": { "goal": [{ "clause": 0, "scope": 1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } }, "46": { "goal": [{ "clause": -1, "scope": -1, "term": "(',' (append X13 T10 X14) (append X14 X15 T12))" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14", "X15" ], "exprvars": [] } }, "181": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "192": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T44 X76 T45)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X76"], "exprvars": [] } }, "182": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "193": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes", "161": { "goal": [{ "clause": 2, "scope": 2, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "183": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "163": { "goal": [{ "clause": -1, "scope": -1, "term": "(true)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "154": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "165": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "176": { "goal": [{ "clause": -1, "scope": -1, "term": "(append X45 T26 X46)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T26"], "free": [ "X45", "X46" ], "exprvars": [] } }, "155": { "goal": [{ "clause": -1, "scope": -1, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "177": { "goal": [ { "clause": 1, "scope": 3, "term": "(append T16 X15 T12)" }, { "clause": 2, "scope": 3, "term": "(append T16 X15 T12)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "178": { "goal": [{ "clause": 1, "scope": 3, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "157": { "goal": [ { "clause": 1, "scope": 2, "term": "(append X13 T10 X14)" }, { "clause": 2, "scope": 2, "term": "(append X13 T10 X14)" } ], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "179": { "goal": [{ "clause": 2, "scope": 3, "term": "(append T16 X15 T12)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": ["X15"], "exprvars": [] } }, "159": { "goal": [{ "clause": 1, "scope": 2, "term": "(append X13 T10 X14)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T10"], "free": [ "X13", "X14" ], "exprvars": [] } }, "6": { "goal": [{ "clause": -1, "scope": -1, "term": "(sublist T1 T2)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } } }, "edges": [ { "from": 6, "to": 11, "label": "CASE" }, { "from": 11, "to": 46, "label": "ONLY EVAL with clause\nsublist(X11, X12) :- ','(append(X13, X11, X14), append(X14, X15, X12)).\nand substitutionT1 -> T10,\nX11 -> T10,\nT2 -> T12,\nX12 -> T12,\nT11 -> T12" }, { "from": 46, "to": 154, "label": "SPLIT 1" }, { "from": 46, "to": 155, "label": "SPLIT 2\nnew knowledge:\nT10 is ground\nreplacements:X13 -> T15,\nX14 -> T16" }, { "from": 154, "to": 157, "label": "CASE" }, { "from": 155, "to": 177, "label": "CASE" }, { "from": 157, "to": 159, "label": "PARALLEL" }, { "from": 157, "to": 161, "label": "PARALLEL" }, { "from": 159, "to": 163, "label": "ONLY EVAL with clause\nappend([], X24, X24).\nand substitutionX13 -> [],\nT10 -> T22,\nX24 -> T22,\nX14 -> T22" }, { "from": 161, "to": 176, "label": "ONLY EVAL with clause\nappend(.(X40, X41), X42, .(X40, X43)) :- append(X41, X42, X43).\nand substitutionX40 -> X44,\nX41 -> X45,\nX13 -> .(X44, X45),\nT10 -> T26,\nX42 -> T26,\nX43 -> X46,\nX14 -> .(X44, X46)" }, { "from": 163, "to": 165, "label": "SUCCESS" }, { "from": 176, "to": 154, "label": "INSTANCE with matching:\nX13 -> X45\nT10 -> T26\nX14 -> X46" }, { "from": 177, "to": 178, "label": "PARALLEL" }, { "from": 177, "to": 179, "label": "PARALLEL" }, { "from": 178, "to": 181, "label": "EVAL with clause\nappend([], X60, X60).\nand substitutionT16 -> [],\nX15 -> T34,\nX60 -> T34,\nT12 -> T34,\nX61 -> T34" }, { "from": 178, "to": 182, "label": "EVAL-BACKTRACK" }, { "from": 179, "to": 192, "label": "EVAL with clause\nappend(.(X72, X73), X74, .(X72, X75)) :- append(X73, X74, X75).\nand substitutionX72 -> T41,\nX73 -> T44,\nT16 -> .(T41, T44),\nX15 -> X76,\nX74 -> X76,\nX75 -> T45,\nT12 -> .(T41, T45),\nT42 -> T44,\nT43 -> T45" }, { "from": 179, "to": 193, "label": "EVAL-BACKTRACK" }, { "from": 181, "to": 183, "label": "SUCCESS" }, { "from": 192, "to": 155, "label": "INSTANCE with matching:\nT16 -> T44\nX15 -> X76\nT12 -> T45" } ], "type": "Graph" } } ---------------------------------------- (79) Complex Obligation (AND) ---------------------------------------- (80) Obligation: Rules: f155_out -> f192_out :|: TRUE f192_in -> f155_in :|: TRUE f177_out -> f155_out :|: TRUE f155_in -> f177_in :|: TRUE f178_out -> f177_out :|: TRUE f179_out -> f177_out :|: TRUE f177_in -> f178_in :|: TRUE f177_in -> f179_in :|: TRUE f193_out -> f179_out :|: TRUE f179_in -> f192_in :|: TRUE f179_in -> f193_in :|: TRUE f192_out -> f179_out :|: TRUE f11_out(T1) -> f6_out(T1) :|: TRUE f6_in(x) -> f11_in(x) :|: TRUE f11_in(T10) -> f46_in(T10) :|: TRUE f46_out(x1) -> f11_out(x1) :|: TRUE f154_out(x2) -> f155_in :|: TRUE f46_in(x3) -> f154_in(x3) :|: TRUE f155_out -> f46_out(x4) :|: TRUE Start term: f6_in(T1) ---------------------------------------- (81) IRSwTSimpleDependencyGraphProof (EQUIVALENT) Constructed simple dependency graph. Simplified to the following IRSwTs: ---------------------------------------- (82) TRUE ---------------------------------------- (83) Obligation: Rules: f161_in(T26) -> f176_in(T26) :|: TRUE f176_out(x) -> f161_out(x) :|: TRUE f176_in(x1) -> f154_in(x1) :|: TRUE f154_out(x2) -> f176_out(x2) :|: TRUE f157_out(T10) -> f154_out(T10) :|: TRUE f154_in(x3) -> f157_in(x3) :|: TRUE f161_out(x4) -> f157_out(x4) :|: TRUE f157_in(x5) -> f159_in(x5) :|: TRUE f159_out(x6) -> f157_out(x6) :|: TRUE f157_in(x7) -> f161_in(x7) :|: TRUE f11_out(T1) -> f6_out(T1) :|: TRUE f6_in(x8) -> f11_in(x8) :|: TRUE f11_in(x9) -> f46_in(x9) :|: TRUE f46_out(x10) -> f11_out(x10) :|: TRUE f154_out(x11) -> f155_in :|: TRUE f46_in(x12) -> f154_in(x12) :|: TRUE f155_out -> f46_out(x13) :|: TRUE Start term: f6_in(T1) ---------------------------------------- (84) IRSwTSimpleDependencyGraphProof (EQUIVALENT) Constructed simple dependency graph. Simplified to the following IRSwTs: intTRSProblem: f161_in(T26) -> f176_in(T26) :|: TRUE f176_in(x1) -> f154_in(x1) :|: TRUE f154_in(x3) -> f157_in(x3) :|: TRUE f157_in(x7) -> f161_in(x7) :|: TRUE ---------------------------------------- (85) Obligation: Rules: f161_in(T26) -> f176_in(T26) :|: TRUE f176_in(x1) -> f154_in(x1) :|: TRUE f154_in(x3) -> f157_in(x3) :|: TRUE f157_in(x7) -> f161_in(x7) :|: TRUE ---------------------------------------- (86) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (87) Obligation: Rules: f161_in(T26:0) -> f161_in(T26:0) :|: TRUE ---------------------------------------- (88) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (89) Obligation: Rules: f161_in(T26:0) -> f161_in(T26:0) :|: TRUE ---------------------------------------- (90) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f161_in(T26:0) -> f161_in(T26:0) :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (91) Obligation: Termination digraph: Nodes: (1) f161_in(T26:0) -> f161_in(T26:0) :|: TRUE Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (92) FilterProof (EQUIVALENT) Used the following sort dictionary for filtering: f161_in(VARIABLE) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (93) Obligation: Rules: f161_in(T26:0) -> f161_in(T26:0) :|: TRUE ---------------------------------------- (94) IntTRSNonPeriodicNontermProof (COMPLETE) Normalized system to the following form: f(pc, T26:0) -> f(1, T26:0) :|: pc = 1 && TRUE Proved unsatisfiability of the following formula, indicating that the system is never left after entering: (((run2_0 = ((1 * 1)) and run2_1 = ((run1_1 * 1))) and (((run1_0 * 1)) = ((1 * 1)) and T)) and !(((run2_0 * 1)) = ((1 * 1)) and T)) Proved satisfiability of the following formula, indicating that the system is entered at least once: ((run2_0 = ((1 * 1)) and run2_1 = ((run1_1 * 1))) and (((run1_0 * 1)) = ((1 * 1)) and T)) ---------------------------------------- (95) NO