/export/starexec/sandbox2/solver/bin/starexec_run_standard /export/starexec/sandbox2/benchmark/theBenchmark.pl /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern suffix(a,g) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToPiTRSProof [SOUND, 0 ms] (2) PiTRS (3) DependencyPairsProof [EQUIVALENT, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) UsableRulesProof [EQUIVALENT, 0 ms] (8) PiDP (9) PiDPToQDPProof [SOUND, 0 ms] (10) QDP (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Clauses: suffix(Xs, Ys) :- app(X1, Xs, Ys). app([], X, X). app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs). Query: suffix(a,g) ---------------------------------------- (1) PrologToPiTRSProof (SOUND) We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: suffix_in_2: (f,b) app_in_3: (f,f,b) Transforming Prolog into the following Term Rewriting System: Pi-finite rewrite system: The TRS R consists of the following rules: suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) app_in_aag([], X, X) -> app_out_aag([], X, X) app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) The argument filtering Pi contains the following mapping: suffix_in_ag(x1, x2) = suffix_in_ag(x2) U1_ag(x1, x2, x3) = U1_ag(x2, x3) app_in_aag(x1, x2, x3) = app_in_aag(x3) app_out_aag(x1, x2, x3) = app_out_aag(x1, x2, x3) .(x1, x2) = .(x1, x2) U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x4, x5) suffix_out_ag(x1, x2) = suffix_out_ag(x1, x2) Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog ---------------------------------------- (2) Obligation: Pi-finite rewrite system: The TRS R consists of the following rules: suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) app_in_aag([], X, X) -> app_out_aag([], X, X) app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) The argument filtering Pi contains the following mapping: suffix_in_ag(x1, x2) = suffix_in_ag(x2) U1_ag(x1, x2, x3) = U1_ag(x2, x3) app_in_aag(x1, x2, x3) = app_in_aag(x3) app_out_aag(x1, x2, x3) = app_out_aag(x1, x2, x3) .(x1, x2) = .(x1, x2) U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x4, x5) suffix_out_ag(x1, x2) = suffix_out_ag(x1, x2) ---------------------------------------- (3) DependencyPairsProof (EQUIVALENT) Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: Pi DP problem: The TRS P consists of the following rules: SUFFIX_IN_AG(Xs, Ys) -> U1_AG(Xs, Ys, app_in_aag(X1, Xs, Ys)) SUFFIX_IN_AG(Xs, Ys) -> APP_IN_AAG(X1, Xs, Ys) APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) The TRS R consists of the following rules: suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) app_in_aag([], X, X) -> app_out_aag([], X, X) app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) The argument filtering Pi contains the following mapping: suffix_in_ag(x1, x2) = suffix_in_ag(x2) U1_ag(x1, x2, x3) = U1_ag(x2, x3) app_in_aag(x1, x2, x3) = app_in_aag(x3) app_out_aag(x1, x2, x3) = app_out_aag(x1, x2, x3) .(x1, x2) = .(x1, x2) U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x4, x5) suffix_out_ag(x1, x2) = suffix_out_ag(x1, x2) SUFFIX_IN_AG(x1, x2) = SUFFIX_IN_AG(x2) U1_AG(x1, x2, x3) = U1_AG(x2, x3) APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) U2_AAG(x1, x2, x3, x4, x5) = U2_AAG(x1, x4, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: SUFFIX_IN_AG(Xs, Ys) -> U1_AG(Xs, Ys, app_in_aag(X1, Xs, Ys)) SUFFIX_IN_AG(Xs, Ys) -> APP_IN_AAG(X1, Xs, Ys) APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) The TRS R consists of the following rules: suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) app_in_aag([], X, X) -> app_out_aag([], X, X) app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) The argument filtering Pi contains the following mapping: suffix_in_ag(x1, x2) = suffix_in_ag(x2) U1_ag(x1, x2, x3) = U1_ag(x2, x3) app_in_aag(x1, x2, x3) = app_in_aag(x3) app_out_aag(x1, x2, x3) = app_out_aag(x1, x2, x3) .(x1, x2) = .(x1, x2) U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x4, x5) suffix_out_ag(x1, x2) = suffix_out_ag(x1, x2) SUFFIX_IN_AG(x1, x2) = SUFFIX_IN_AG(x2) U1_AG(x1, x2, x3) = U1_AG(x2, x3) APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) U2_AAG(x1, x2, x3, x4, x5) = U2_AAG(x1, x4, x5) We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) The TRS R consists of the following rules: suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) app_in_aag([], X, X) -> app_out_aag([], X, X) app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) The argument filtering Pi contains the following mapping: suffix_in_ag(x1, x2) = suffix_in_ag(x2) U1_ag(x1, x2, x3) = U1_ag(x2, x3) app_in_aag(x1, x2, x3) = app_in_aag(x3) app_out_aag(x1, x2, x3) = app_out_aag(x1, x2, x3) .(x1, x2) = .(x1, x2) U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x4, x5) suffix_out_ag(x1, x2) = suffix_out_ag(x1, x2) APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) UsableRulesProof (EQUIVALENT) For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. ---------------------------------------- (8) Obligation: Pi DP problem: The TRS P consists of the following rules: APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) R is empty. The argument filtering Pi contains the following mapping: .(x1, x2) = .(x1, x2) APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) We have to consider all (P,R,Pi)-chains ---------------------------------------- (9) PiDPToQDPProof (SOUND) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (10) Obligation: Q DP problem: The TRS P consists of the following rules: APP_IN_AAG(.(X, Zs)) -> APP_IN_AAG(Zs) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (11) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *APP_IN_AAG(.(X, Zs)) -> APP_IN_AAG(Zs) The graph contains the following edges 1 > 1 ---------------------------------------- (12) YES