/export/starexec/sandbox/solver/bin/starexec_run_standard /export/starexec/sandbox/benchmark/theBenchmark.pl /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- YES proof of /export/starexec/sandbox/benchmark/theBenchmark.pl # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty Left Termination of the query pattern p1(g) w.r.t. the given Prolog program could successfully be proven: (0) Prolog (1) PrologToDTProblemTransformerProof [SOUND, 0 ms] (2) TRIPLES (3) TriplesToPiDPProof [SOUND, 0 ms] (4) PiDP (5) DependencyGraphProof [EQUIVALENT, 0 ms] (6) PiDP (7) PiDPToQDPProof [EQUIVALENT, 0 ms] (8) QDP (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] (10) YES ---------------------------------------- (0) Obligation: Clauses: p1(f(X)) :- p1(X). p2(f(X)) :- p2(X). Query: p1(g) ---------------------------------------- (1) PrologToDTProblemTransformerProof (SOUND) Built DT problem from termination graph DT10. { "root": 2, "program": { "directives": [], "clauses": [ [ "(p1 (f X))", "(p1 X)" ], [ "(p2 (f X))", "(p2 X)" ] ] }, "graph": { "nodes": { "23": { "goal": [{ "clause": 0, "scope": 2, "term": "(p1 T3)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T3"], "free": [], "exprvars": [] } }, "2": { "goal": [{ "clause": -1, "scope": -1, "term": "(p1 T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } }, "24": { "goal": [{ "clause": -1, "scope": -1, "term": "(p1 T6)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T6"], "free": [], "exprvars": [] } }, "3": { "goal": [{ "clause": 0, "scope": 1, "term": "(p1 T1)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T1"], "free": [], "exprvars": [] } }, "25": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "16": { "goal": [{ "clause": -1, "scope": -1, "term": "(p1 T3)" }], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": ["T3"], "free": [], "exprvars": [] } }, "17": { "goal": [], "kb": { "nonunifying": [], "intvars": {}, "arithmetic": { "type": "PlainIntegerRelationState", "relations": [] }, "ground": [], "free": [], "exprvars": [] } }, "type": "Nodes" }, "edges": [ { "from": 2, "to": 3, "label": "CASE" }, { "from": 3, "to": 16, "label": "EVAL with clause\np1(f(X2)) :- p1(X2).\nand substitutionX2 -> T3,\nT1 -> f(T3)" }, { "from": 3, "to": 17, "label": "EVAL-BACKTRACK" }, { "from": 16, "to": 23, "label": "CASE" }, { "from": 23, "to": 24, "label": "EVAL with clause\np1(f(X5)) :- p1(X5).\nand substitutionX5 -> T6,\nT3 -> f(T6)" }, { "from": 23, "to": 25, "label": "EVAL-BACKTRACK" }, { "from": 24, "to": 2, "label": "INSTANCE with matching:\nT1 -> T6" } ], "type": "Graph" } } ---------------------------------------- (2) Obligation: Triples: p1A(f(f(X1))) :- p1A(X1). Clauses: p1cA(f(f(X1))) :- p1cA(X1). Afs: p1A(x1) = p1A(x1) ---------------------------------------- (3) TriplesToPiDPProof (SOUND) We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes: p1A_in_1: (b) Transforming TRIPLES into the following Term Rewriting System: Pi DP problem: The TRS P consists of the following rules: P1A_IN_G(f(f(X1))) -> U1_G(X1, p1A_in_g(X1)) P1A_IN_G(f(f(X1))) -> P1A_IN_G(X1) R is empty. Pi is empty. We have to consider all (P,R,Pi)-chains Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES ---------------------------------------- (4) Obligation: Pi DP problem: The TRS P consists of the following rules: P1A_IN_G(f(f(X1))) -> U1_G(X1, p1A_in_g(X1)) P1A_IN_G(f(f(X1))) -> P1A_IN_G(X1) R is empty. Pi is empty. We have to consider all (P,R,Pi)-chains ---------------------------------------- (5) DependencyGraphProof (EQUIVALENT) The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node. ---------------------------------------- (6) Obligation: Pi DP problem: The TRS P consists of the following rules: P1A_IN_G(f(f(X1))) -> P1A_IN_G(X1) R is empty. Pi is empty. We have to consider all (P,R,Pi)-chains ---------------------------------------- (7) PiDPToQDPProof (EQUIVALENT) Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. ---------------------------------------- (8) Obligation: Q DP problem: The TRS P consists of the following rules: P1A_IN_G(f(f(X1))) -> P1A_IN_G(X1) R is empty. Q is empty. We have to consider all (P,Q,R)-chains. ---------------------------------------- (9) QDPSizeChangeProof (EQUIVALENT) By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs: *P1A_IN_G(f(f(X1))) -> P1A_IN_G(X1) The graph contains the following edges 1 > 1 ---------------------------------------- (10) YES