/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 166 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 51 ms] (8) BOUNDS(1, n^1) (9) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (10) TRS for Loop Detection (11) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: c0(0, 0) -> 0 s0(0) -> 0 cons_f0(0) -> 0 cons_g0(0) -> 0 f0(0) -> 1 g0(0) -> 2 encArg0(0) -> 3 encode_f0(0) -> 4 encode_c0(0, 0) -> 5 encode_s0(0) -> 6 encode_g0(0) -> 7 s1(0) -> 9 c1(0, 9) -> 8 f1(8) -> 1 s1(0) -> 11 c1(11, 0) -> 10 g1(10) -> 2 encArg1(0) -> 12 encArg1(0) -> 13 c1(12, 13) -> 3 encArg1(0) -> 14 s1(14) -> 3 encArg1(0) -> 15 f1(15) -> 3 encArg1(0) -> 16 g1(16) -> 3 f1(15) -> 4 c1(12, 13) -> 5 s1(14) -> 6 g1(16) -> 7 s1(9) -> 9 s1(11) -> 11 c1(12, 13) -> 12 c1(12, 13) -> 13 c1(12, 13) -> 14 c1(12, 13) -> 15 c1(12, 13) -> 16 s1(14) -> 12 s1(14) -> 13 s1(14) -> 14 s1(14) -> 15 s1(14) -> 16 f1(15) -> 12 f1(15) -> 13 f1(15) -> 14 f1(15) -> 15 f1(15) -> 16 g1(16) -> 12 g1(16) -> 13 g1(16) -> 14 g1(16) -> 15 g1(16) -> 16 s2(13) -> 18 c2(14, 18) -> 17 f2(17) -> 3 f2(17) -> 4 f2(17) -> 12 f2(17) -> 13 f2(17) -> 14 f2(17) -> 15 f2(17) -> 16 s2(12) -> 20 c2(20, 14) -> 19 g2(19) -> 3 g2(19) -> 7 g2(19) -> 12 g2(19) -> 13 g2(19) -> 14 g2(19) -> 15 g2(19) -> 16 s2(18) -> 18 s2(20) -> 20 ---------------------------------------- (8) BOUNDS(1, n^1) ---------------------------------------- (9) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (10) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (11) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(c(x, s(y))) ->^+ g(c(s(x), y)) gives rise to a decreasing loop by considering the right hand sides subterm at position []. The pumping substitution is [y / s(y)]. The result substitution is [x / s(x)]. ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^1). The TRS R consists of the following rules: f(c(s(x), y)) -> f(c(x, s(y))) g(c(x, s(y))) -> g(c(s(x), y)) The (relative) TRS S consists of the following rules: encArg(c(x_1, x_2)) -> c(encArg(x_1), encArg(x_2)) encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_c(x_1, x_2) -> c(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) Rewrite Strategy: FULL