/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 64 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (18) CdtProblem (19) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 77 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 29 ms] (24) CdtProblem (25) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 48 ms] (26) CdtProblem (27) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 60 ms] (28) CdtProblem (29) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (30) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(1) -> f(g(1)) f(f(x)) -> f(x) g(0) -> g(f(0)) g(g(x)) -> g(x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_1 -> 1 encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(1) -> f(g(1)) f(f(x)) -> f(x) g(0) -> g(f(0)) g(g(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_1 -> 1 encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(1) -> f(g(1)) f(f(x)) -> f(x) g(0) -> g(f(0)) g(g(x)) -> g(x) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_1 -> 1 encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(1) -> f(g(1)) g(0) -> g(f(0)) g(c_g(x)) -> g(x) f(c_f(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_1 -> 1 encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 f(x0) -> c_f(x0) g(x0) -> c_g(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(1) -> f(g(1)) g(0) -> g(f(0)) g(c_g(x)) -> g(x) f(c_f(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_1 -> 1 encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 f(x0) -> c_f(x0) g(x0) -> c_g(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(1) -> c ENCARG(0) -> c1 ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c4(F(encArg(z0)), ENCARG(z0)) ENCODE_1 -> c5 ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c7 F(z0) -> c8 F(1) -> c9(F(g(1)), G(1)) F(c_f(z0)) -> c10(F(z0)) G(z0) -> c11 G(0) -> c12(G(f(0)), F(0)) G(c_g(z0)) -> c13(G(z0)) S tuples: F(1) -> c9(F(g(1)), G(1)) F(c_f(z0)) -> c10(F(z0)) G(0) -> c12(G(f(0)), F(0)) G(c_g(z0)) -> c13(G(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_1, ENCODE_G_1, ENCODE_0, F_1, G_1 Compound Symbols: c, c1, c2_2, c3_2, c4_2, c5, c6_2, c7, c8, c9_2, c10_1, c11, c12_2, c13_1 ---------------------------------------- (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 6 trailing nodes: ENCARG(0) -> c1 ENCODE_1 -> c5 F(z0) -> c8 ENCODE_0 -> c7 G(z0) -> c11 ENCARG(1) -> c ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c4(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) F(1) -> c9(F(g(1)), G(1)) F(c_f(z0)) -> c10(F(z0)) G(0) -> c12(G(f(0)), F(0)) G(c_g(z0)) -> c13(G(z0)) S tuples: F(1) -> c9(F(g(1)), G(1)) F(c_f(z0)) -> c10(F(z0)) G(0) -> c12(G(f(0)), F(0)) G(c_g(z0)) -> c13(G(z0)) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c2_2, c3_2, c4_2, c6_2, c9_2, c10_1, c12_2, c13_1 ---------------------------------------- (13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 2 trailing tuple parts ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c4(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c6(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c2_2, c3_2, c4_2, c6_2, c10_1, c13_1, c9_1, c12_1 ---------------------------------------- (15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(G(encArg(z0))) ENCODE_G(z0) -> c(ENCARG(z0)) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (17) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(ENCARG(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) K tuples:none Defined Rule Symbols: f_1, g_1, encArg_1, encode_f_1, encode_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (19) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_1 -> 1 encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0) -> c12(G(f(0))) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0) -> c_f(z0) f(1) -> f(g(1)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(c_g(z0)) -> g(z0) g(0) -> g(f(0)) encArg(1) -> 1 encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = [1] POL(ENCODE_G(x_1)) = [1] POL(F(x_1)) = [1] POL(G(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c12(x_1)) = x_1 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_f(x_1)) = 0 POL(c_g(x_1)) = x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] POL(f(x_1)) = 0 POL(g(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) K tuples: G(0) -> c12(G(f(0))) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(1) -> c9(F(g(1))) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0) -> c_f(z0) f(1) -> f(g(1)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(c_g(z0)) -> g(z0) g(0) -> g(f(0)) encArg(1) -> 1 encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(1) = [1] POL(ENCARG(x_1)) = x_1 POL(ENCODE_F(x_1)) = [3] POL(ENCODE_G(x_1)) = [1] + x_1 POL(F(x_1)) = x_1 POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c12(x_1)) = x_1 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_f(x_1)) = x_1 POL(c_g(x_1)) = 0 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [1] POL(f(x_1)) = x_1 POL(g(x_1)) = 0 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) K tuples: G(0) -> c12(G(f(0))) F(1) -> c9(F(g(1))) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(c_f(z0)) -> c10(F(z0)) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0) -> c_f(z0) f(1) -> f(g(1)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(c_g(z0)) -> g(z0) g(0) -> g(f(0)) encArg(1) -> 1 encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(1) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = x_1 POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c12(x_1)) = x_1 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_f(x_1)) = [2] + x_1 POL(c_g(x_1)) = 0 POL(cons_f(x_1)) = [2] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = 0 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: G(c_g(z0)) -> c13(G(z0)) K tuples: G(0) -> c12(G(f(0))) F(1) -> c9(F(g(1))) F(c_f(z0)) -> c10(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (27) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(c_g(z0)) -> c13(G(z0)) We considered the (Usable) Rules: g(z0) -> c_g(z0) f(z0) -> c_f(z0) f(1) -> f(g(1)) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(c_g(z0)) -> g(z0) g(0) -> g(f(0)) encArg(1) -> 1 encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = 0 POL(1) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_F(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(F(x_1)) = 0 POL(G(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c10(x_1)) = x_1 POL(c12(x_1)) = x_1 POL(c13(x_1)) = x_1 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c3(x_1, x_2)) = x_1 + x_2 POL(c9(x_1)) = x_1 POL(c_f(x_1)) = 0 POL(c_g(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1)) = 0 POL(g(x_1)) = [2] + x_1 ---------------------------------------- (28) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(1) -> f(g(1)) f(c_f(z0)) -> f(z0) g(z0) -> c_g(z0) g(0) -> g(f(0)) g(c_g(z0)) -> g(z0) Tuples: ENCARG(cons_f(z0)) -> c2(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c3(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) F(1) -> c9(F(g(1))) G(0) -> c12(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples:none K tuples: G(0) -> c12(G(f(0))) F(1) -> c9(F(g(1))) F(c_f(z0)) -> c10(F(z0)) G(c_g(z0)) -> c13(G(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c2_2, c3_2, c10_1, c13_1, c9_1, c12_1, c_1 ---------------------------------------- (29) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (30) BOUNDS(1, 1)