/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 40 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtRhsSimplificationProcessorProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CdtProblem (17) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (18) CdtProblem (19) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 68 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 57 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) g(0) -> g(f(0)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) g(0) -> g(f(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(f(x)) -> f(x) g(0) -> g(f(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: g(0) -> g(f(0)) f(c_f(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 f(x0) -> c_f(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: g(0) -> g(f(0)) f(c_f(x)) -> f(x) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_0 -> 0 f(x0) -> c_f(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(0) -> c ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c4(G(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c5 F(z0) -> c6 F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0)), F(0)) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0)), F(0)) K tuples:none Defined Rule Symbols: g_1, f_1, encArg_1, encode_f_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, ENCODE_0, F_1, G_1 Compound Symbols: c, c1_2, c2_2, c3_2, c4_2, c5, c6, c7_1, c8_2 ---------------------------------------- (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 3 trailing nodes: F(z0) -> c6 ENCARG(0) -> c ENCODE_0 -> c5 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c4(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0)), F(0)) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0)), F(0)) K tuples:none Defined Rule Symbols: g_1, f_1, encArg_1, encode_f_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c7_1, c8_2 ---------------------------------------- (13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID)) Removed 1 trailing tuple parts ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) ENCODE_F(z0) -> c3(F(encArg(z0)), ENCARG(z0)) ENCODE_G(z0) -> c4(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) K tuples:none Defined Rule Symbols: g_1, f_1, encArg_1, encode_f_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, ENCODE_F_1, ENCODE_G_1, F_1, G_1 Compound Symbols: c1_2, c2_2, c3_2, c4_2, c7_1, c8_1 ---------------------------------------- (15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(G(encArg(z0))) ENCODE_G(z0) -> c(ENCARG(z0)) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) K tuples:none Defined Rule Symbols: g_1, f_1, encArg_1, encode_f_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c7_1, c8_1, c_1 ---------------------------------------- (17) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_F(z0) -> c(ENCARG(z0)) ENCODE_G(z0) -> c(ENCARG(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) K tuples:none Defined Rule Symbols: g_1, f_1, encArg_1, encode_f_1, encode_g_1, encode_0 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c7_1, c8_1, c_1 ---------------------------------------- (19) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_f(z0) -> f(encArg(z0)) encode_g(z0) -> g(encArg(z0)) encode_0 -> 0 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) K tuples:none Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c7_1, c8_1, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. G(0) -> c8(G(f(0))) We considered the (Usable) Rules: f(z0) -> c_f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(0) -> g(f(0)) encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [2] POL(ENCARG(x_1)) = [2]x_1 POL(ENCODE_F(x_1)) = [1] POL(ENCODE_G(x_1)) = [3] POL(F(x_1)) = 0 POL(G(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1)) = x_1 POL(c_f(x_1)) = 0 POL(cons_f(x_1)) = x_1 POL(cons_g(x_1)) = [1] + x_1 POL(encArg(x_1)) = [2] POL(f(x_1)) = 0 POL(g(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples: F(c_f(z0)) -> c7(F(z0)) K tuples: G(0) -> c8(G(f(0))) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c7_1, c8_1, c_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. F(c_f(z0)) -> c7(F(z0)) We considered the (Usable) Rules: f(z0) -> c_f(z0) encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) g(0) -> g(f(0)) encArg(0) -> 0 f(c_f(z0)) -> f(z0) And the Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(0) = [1] POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_F(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(ENCODE_G(x_1)) = [2] + x_1 + [2]x_1^2 POL(F(x_1)) = x_1 POL(G(x_1)) = 0 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7(x_1)) = x_1 POL(c8(x_1)) = x_1 POL(c_f(x_1)) = [2] + x_1 POL(cons_f(x_1)) = [1] + x_1 POL(cons_g(x_1)) = x_1 POL(encArg(x_1)) = [2] + [2]x_1 POL(f(x_1)) = [2] + x_1 POL(g(x_1)) = [2] ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_f(z0)) -> f(encArg(z0)) encArg(cons_g(z0)) -> g(encArg(z0)) f(z0) -> c_f(z0) f(c_f(z0)) -> f(z0) g(0) -> g(f(0)) Tuples: ENCARG(cons_f(z0)) -> c1(F(encArg(z0)), ENCARG(z0)) ENCARG(cons_g(z0)) -> c2(G(encArg(z0)), ENCARG(z0)) F(c_f(z0)) -> c7(F(z0)) G(0) -> c8(G(f(0))) ENCODE_F(z0) -> c(F(encArg(z0))) ENCODE_G(z0) -> c(G(encArg(z0))) S tuples:none K tuples: G(0) -> c8(G(f(0))) F(c_f(z0)) -> c7(F(z0)) Defined Rule Symbols: encArg_1, f_1, g_1 Defined Pair Symbols: ENCARG_1, F_1, G_1, ENCODE_F_1, ENCODE_G_1 Compound Symbols: c1_2, c2_2, c7_1, c8_1, c_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1)