/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 191 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 264 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 34 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(g(s(0)), y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(g(s(0)), y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x), s(0), y) -> f(g(s(0)), y, g(x)) g(s(x)) -> s(g(x)) g(0) -> 0 The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(g(x), s(0'), y) -> f(g(s(0')), y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' The (relative) TRS S consists of the following rules: encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: f(g(x), s(0'), y) -> f(g(s(0')), y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (10) Obligation: TRS: Rules: f(g(x), s(0'), y) -> f(g(s(0')), y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_0':s:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_f:cons_g2_4(n4_4), rt in Omega(1 + n4_4) Induction Base: g(gen_0':s:cons_f:cons_g2_4(0)) ->_R^Omega(1) 0' Induction Step: g(gen_0':s:cons_f:cons_g2_4(+(n4_4, 1))) ->_R^Omega(1) s(g(gen_0':s:cons_f:cons_g2_4(n4_4))) ->_IH s(gen_0':s:cons_f:cons_g2_4(c5_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(g(x), s(0'), y) -> f(g(s(0')), y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: f(g(x), s(0'), y) -> f(g(s(0')), y, g(x)) g(s(x)) -> s(g(x)) g(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons_f(x_1, x_2, x_3)) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encode_f(x_1, x_2, x_3) -> f(encArg(x_1), encArg(x_2), encArg(x_3)) encode_g(x_1) -> g(encArg(x_1)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' Types: f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g 0' :: 0':s:cons_f:cons_g encArg :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g cons_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_f :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_g :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_s :: 0':s:cons_f:cons_g -> 0':s:cons_f:cons_g encode_0 :: 0':s:cons_f:cons_g hole_0':s:cons_f:cons_g1_4 :: 0':s:cons_f:cons_g gen_0':s:cons_f:cons_g2_4 :: Nat -> 0':s:cons_f:cons_g Lemmas: g(gen_0':s:cons_f:cons_g2_4(n4_4)) -> gen_0':s:cons_f:cons_g2_4(n4_4), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_f:cons_g2_4(0) <=> 0' gen_0':s:cons_f:cons_g2_4(+(x, 1)) <=> s(gen_0':s:cons_f:cons_g2_4(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_f:cons_g2_4(n190_4)) -> gen_0':s:cons_f:cons_g2_4(n190_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_f:cons_g2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_f:cons_g2_4(+(n190_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_f:cons_g2_4(n190_4))) ->_IH s(gen_0':s:cons_f:cons_g2_4(c191_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)