/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 167 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (12) CdtProblem (13) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (16) CdtProblem (17) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 65 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 8 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 19 ms] (24) CdtProblem (25) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (26) BOUNDS(1, 1) (27) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (28) CpxRelTRS (29) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (30) typed CpxTrs (31) OrderProof [LOWER BOUND(ID), 0 ms] (32) typed CpxTrs (33) RewriteLemmaProof [LOWER BOUND(ID), 401 ms] (34) BEST (35) proven lower bound (36) LowerBoundPropagationProof [FINISHED, 0 ms] (37) BOUNDS(n^1, INF) (38) typed CpxTrs (39) RewriteLemmaProof [LOWER BOUND(ID), 112 ms] (40) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) The (relative) TRS S consists of the following rules: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) The (relative) TRS S consists of the following rules: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) minus(c_minus(x)) -> x The (relative) TRS S consists of the following rules: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) minus(x0) -> c_minus(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) minus(c_minus(x)) -> x The (relative) TRS S consists of the following rules: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) minus(x0) -> c_minus(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) encode_minus(z0) -> minus(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) ENCODE_MINUS(z0) -> c3(MINUS(encArg(z0)), ENCARG(z0)) ENCODE_H(z0) -> c4(ENCARG(z0)) ENCODE_F(z0, z1) -> c5(ENCARG(z0), ENCARG(z1)) MINUS(z0) -> c6 MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 S tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples:none Defined Rule Symbols: minus_1, encArg_1, encode_minus_1, encode_h_1, encode_f_2 Defined Pair Symbols: ENCARG_1, ENCODE_MINUS_1, ENCODE_H_1, ENCODE_F_2, MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c3_2, c4_1, c5_2, c6, c7_1, c8_2, c9 ---------------------------------------- (11) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 2 leading nodes: ENCODE_H(z0) -> c4(ENCARG(z0)) ENCODE_F(z0, z1) -> c5(ENCARG(z0), ENCARG(z1)) Removed 1 trailing nodes: MINUS(z0) -> c6 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) encode_minus(z0) -> minus(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) ENCODE_MINUS(z0) -> c3(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 S tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples:none Defined Rule Symbols: minus_1, encArg_1, encode_minus_1, encode_h_1, encode_f_2 Defined Pair Symbols: ENCARG_1, ENCODE_MINUS_1, MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c3_2, c7_1, c8_2, c9 ---------------------------------------- (13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) encode_minus(z0) -> minus(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) ENCODE_MINUS(z0) -> c4(ENCARG(z0)) S tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples:none Defined Rule Symbols: minus_1, encArg_1, encode_minus_1, encode_h_1, encode_f_2 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (15) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 1 leading nodes: ENCODE_MINUS(z0) -> c4(ENCARG(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) encode_minus(z0) -> minus(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) S tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples:none Defined Rule Symbols: minus_1, encArg_1, encode_minus_1, encode_h_1, encode_f_2 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (17) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_minus(z0) -> minus(encArg(z0)) encode_h(z0) -> h(encArg(z0)) encode_f(z0, z1) -> f(encArg(z0), encArg(z1)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) S tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples:none Defined Rule Symbols: encArg_1, minus_1 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MINUS(h(z0)) -> c7(MINUS(z0)) We considered the (Usable) Rules: encArg(cons_minus(z0)) -> minus(encArg(z0)) encArg(h(z0)) -> h(encArg(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(z0) -> c_minus(z0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) minus(h(z0)) -> h(minus(z0)) minus(c_minus(z0)) -> z0 And the Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = [2]x_1 + x_1^2 POL(ENCODE_MINUS(x_1)) = [1] + [2]x_1 + x_1^2 POL(MINUS(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9) = 0 POL(c_minus(x_1)) = x_1 POL(cons_minus(x_1)) = [1] + x_1 POL(encArg(x_1)) = [2]x_1 POL(f(x_1, x_2)) = x_1 + x_2 POL(h(x_1)) = [2] + x_1 POL(minus(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) S tuples: MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 K tuples: MINUS(h(z0)) -> c7(MINUS(z0)) Defined Rule Symbols: encArg_1, minus_1 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MINUS(c_minus(z0)) -> c9 We considered the (Usable) Rules: encArg(cons_minus(z0)) -> minus(encArg(z0)) encArg(h(z0)) -> h(encArg(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(z0) -> c_minus(z0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) minus(h(z0)) -> h(minus(z0)) minus(c_minus(z0)) -> z0 And the Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = [2] + [2]x_1 + x_1^2 POL(ENCODE_MINUS(x_1)) = [2] + x_1 + [2]x_1^2 POL(MINUS(x_1)) = [1] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9) = 0 POL(c_minus(x_1)) = x_1 POL(cons_minus(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = [1] + x_1 + x_2 POL(h(x_1)) = x_1 POL(minus(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) S tuples: MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) K tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(c_minus(z0)) -> c9 Defined Rule Symbols: encArg_1, minus_1 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) We considered the (Usable) Rules: encArg(cons_minus(z0)) -> minus(encArg(z0)) encArg(h(z0)) -> h(encArg(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(z0) -> c_minus(z0) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) minus(h(z0)) -> h(minus(z0)) minus(c_minus(z0)) -> z0 And the Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(ENCARG(x_1)) = [1] + [2]x_1 + [2]x_1^2 POL(ENCODE_MINUS(x_1)) = [1] + [2]x_1 + x_1^2 POL(MINUS(x_1)) = [2]x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c4(x_1)) = x_1 POL(c7(x_1)) = x_1 POL(c8(x_1, x_2)) = x_1 + x_2 POL(c9) = 0 POL(c_minus(x_1)) = x_1 POL(cons_minus(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(f(x_1, x_2)) = [2] + x_1 + x_2 POL(h(x_1)) = x_1 POL(minus(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(h(z0)) -> h(encArg(z0)) encArg(f(z0, z1)) -> f(encArg(z0), encArg(z1)) encArg(cons_minus(z0)) -> minus(encArg(z0)) minus(z0) -> c_minus(z0) minus(h(z0)) -> h(minus(z0)) minus(f(z0, z1)) -> f(minus(z1), minus(z0)) minus(c_minus(z0)) -> z0 Tuples: ENCARG(h(z0)) -> c(ENCARG(z0)) ENCARG(f(z0, z1)) -> c1(ENCARG(z0), ENCARG(z1)) ENCARG(cons_minus(z0)) -> c2(MINUS(encArg(z0)), ENCARG(z0)) MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) MINUS(c_minus(z0)) -> c9 ENCODE_MINUS(z0) -> c4(MINUS(encArg(z0))) S tuples:none K tuples: MINUS(h(z0)) -> c7(MINUS(z0)) MINUS(c_minus(z0)) -> c9 MINUS(f(z0, z1)) -> c8(MINUS(z1), MINUS(z0)) Defined Rule Symbols: encArg_1, minus_1 Defined Pair Symbols: ENCARG_1, MINUS_1, ENCODE_MINUS_1 Compound Symbols: c_1, c1_2, c2_2, c7_1, c8_2, c9, c4_1 ---------------------------------------- (25) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (26) BOUNDS(1, 1) ---------------------------------------- (27) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (28) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) The (relative) TRS S consists of the following rules: encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (29) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (30) Obligation: TRS: Rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: minus :: h:f:cons_minus -> h:f:cons_minus h :: h:f:cons_minus -> h:f:cons_minus f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus encArg :: h:f:cons_minus -> h:f:cons_minus cons_minus :: h:f:cons_minus -> h:f:cons_minus encode_minus :: h:f:cons_minus -> h:f:cons_minus encode_h :: h:f:cons_minus -> h:f:cons_minus encode_f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus hole_h:f:cons_minus1_0 :: h:f:cons_minus gen_h:f:cons_minus2_0 :: Nat -> h:f:cons_minus ---------------------------------------- (31) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: minus, encArg They will be analysed ascendingly in the following order: minus < encArg ---------------------------------------- (32) Obligation: TRS: Rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: minus :: h:f:cons_minus -> h:f:cons_minus h :: h:f:cons_minus -> h:f:cons_minus f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus encArg :: h:f:cons_minus -> h:f:cons_minus cons_minus :: h:f:cons_minus -> h:f:cons_minus encode_minus :: h:f:cons_minus -> h:f:cons_minus encode_h :: h:f:cons_minus -> h:f:cons_minus encode_f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus hole_h:f:cons_minus1_0 :: h:f:cons_minus gen_h:f:cons_minus2_0 :: Nat -> h:f:cons_minus Generator Equations: gen_h:f:cons_minus2_0(0) <=> hole_h:f:cons_minus1_0 gen_h:f:cons_minus2_0(+(x, 1)) <=> h(gen_h:f:cons_minus2_0(x)) The following defined symbols remain to be analysed: minus, encArg They will be analysed ascendingly in the following order: minus < encArg ---------------------------------------- (33) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: minus(gen_h:f:cons_minus2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: minus(gen_h:f:cons_minus2_0(+(1, 0))) Induction Step: minus(gen_h:f:cons_minus2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) h(minus(gen_h:f:cons_minus2_0(+(1, n4_0)))) ->_IH h(*3_0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (34) Complex Obligation (BEST) ---------------------------------------- (35) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: minus :: h:f:cons_minus -> h:f:cons_minus h :: h:f:cons_minus -> h:f:cons_minus f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus encArg :: h:f:cons_minus -> h:f:cons_minus cons_minus :: h:f:cons_minus -> h:f:cons_minus encode_minus :: h:f:cons_minus -> h:f:cons_minus encode_h :: h:f:cons_minus -> h:f:cons_minus encode_f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus hole_h:f:cons_minus1_0 :: h:f:cons_minus gen_h:f:cons_minus2_0 :: Nat -> h:f:cons_minus Generator Equations: gen_h:f:cons_minus2_0(0) <=> hole_h:f:cons_minus1_0 gen_h:f:cons_minus2_0(+(x, 1)) <=> h(gen_h:f:cons_minus2_0(x)) The following defined symbols remain to be analysed: minus, encArg They will be analysed ascendingly in the following order: minus < encArg ---------------------------------------- (36) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (37) BOUNDS(n^1, INF) ---------------------------------------- (38) Obligation: TRS: Rules: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x, y)) -> f(minus(y), minus(x)) encArg(h(x_1)) -> h(encArg(x_1)) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_minus(x_1)) -> minus(encArg(x_1)) encode_minus(x_1) -> minus(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) Types: minus :: h:f:cons_minus -> h:f:cons_minus h :: h:f:cons_minus -> h:f:cons_minus f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus encArg :: h:f:cons_minus -> h:f:cons_minus cons_minus :: h:f:cons_minus -> h:f:cons_minus encode_minus :: h:f:cons_minus -> h:f:cons_minus encode_h :: h:f:cons_minus -> h:f:cons_minus encode_f :: h:f:cons_minus -> h:f:cons_minus -> h:f:cons_minus hole_h:f:cons_minus1_0 :: h:f:cons_minus gen_h:f:cons_minus2_0 :: Nat -> h:f:cons_minus Lemmas: minus(gen_h:f:cons_minus2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_h:f:cons_minus2_0(0) <=> hole_h:f:cons_minus1_0 gen_h:f:cons_minus2_0(+(x, 1)) <=> h(gen_h:f:cons_minus2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (39) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_h:f:cons_minus2_0(+(1, n840_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_h:f:cons_minus2_0(+(1, 0))) Induction Step: encArg(gen_h:f:cons_minus2_0(+(1, +(n840_0, 1)))) ->_R^Omega(0) h(encArg(gen_h:f:cons_minus2_0(+(1, n840_0)))) ->_IH h(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (40) BOUNDS(1, INF)