/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 138 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 240 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g a :: a:cons_s:cons_f:cons_g f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encArg :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_a :: a:cons_s:cons_f:cons_g encode_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g hole_a:cons_s:cons_f:cons_g1_0 :: a:cons_s:cons_f:cons_g gen_a:cons_s:cons_f:cons_g2_0 :: Nat -> a:cons_s:cons_f:cons_g ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: s, f, encArg They will be analysed ascendingly in the following order: f < s s < encArg f < encArg ---------------------------------------- (10) Obligation: TRS: Rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g a :: a:cons_s:cons_f:cons_g f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encArg :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_a :: a:cons_s:cons_f:cons_g encode_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g hole_a:cons_s:cons_f:cons_g1_0 :: a:cons_s:cons_f:cons_g gen_a:cons_s:cons_f:cons_g2_0 :: Nat -> a:cons_s:cons_f:cons_g Generator Equations: gen_a:cons_s:cons_f:cons_g2_0(0) <=> a gen_a:cons_s:cons_f:cons_g2_0(+(x, 1)) <=> cons_s(gen_a:cons_s:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, s, encArg They will be analysed ascendingly in the following order: f < s s < encArg f < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_a:cons_s:cons_f:cons_g2_0(n66_0)) -> gen_a:cons_s:cons_f:cons_g2_0(0), rt in Omega(n66_0) Induction Base: encArg(gen_a:cons_s:cons_f:cons_g2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_a:cons_s:cons_f:cons_g2_0(+(n66_0, 1))) ->_R^Omega(0) s(encArg(gen_a:cons_s:cons_f:cons_g2_0(n66_0))) ->_IH s(gen_a:cons_s:cons_f:cons_g2_0(0)) ->_R^Omega(1) a We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: s(a) -> a s(s(x)) -> x s(f(x, y)) -> f(s(y), s(x)) s(g(x, y)) -> g(s(x), s(y)) f(x, a) -> x f(a, y) -> y f(g(x, y), g(u, v)) -> g(f(x, u), f(y, v)) g(a, a) -> a encArg(a) -> a encArg(cons_s(x_1)) -> s(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_a -> a encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) Types: s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g a :: a:cons_s:cons_f:cons_g f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encArg :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g cons_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_s :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_a :: a:cons_s:cons_f:cons_g encode_f :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g encode_g :: a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g -> a:cons_s:cons_f:cons_g hole_a:cons_s:cons_f:cons_g1_0 :: a:cons_s:cons_f:cons_g gen_a:cons_s:cons_f:cons_g2_0 :: Nat -> a:cons_s:cons_f:cons_g Generator Equations: gen_a:cons_s:cons_f:cons_g2_0(0) <=> a gen_a:cons_s:cons_f:cons_g2_0(+(x, 1)) <=> cons_s(gen_a:cons_s:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)