/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 208 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 290 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 25 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 24 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 70 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0) -> 0 double(s(x)) -> s(s(double(x))) half(0) -> 0 half(s(0)) -> 0 half(s(s(x))) -> s(half(x)) -(x, 0) -> x -(s(x), s(y)) -> -(x, y) if(0, y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: double, half, -, encArg They will be analysed ascendingly in the following order: double < encArg half < encArg - < encArg ---------------------------------------- (10) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if Generator Equations: gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) <=> 0' gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(x, 1)) <=> s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(x)) The following defined symbols remain to be analysed: double, half, -, encArg They will be analysed ascendingly in the following order: double < encArg half < encArg - < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n4_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n4_4)), rt in Omega(1 + n4_4) Induction Base: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0)) ->_R^Omega(1) 0' Induction Step: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(n4_4, 1))) ->_R^Omega(1) s(s(double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n4_4)))) ->_IH s(s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, c5_4)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if Generator Equations: gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) <=> 0' gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(x, 1)) <=> s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(x)) The following defined symbols remain to be analysed: double, half, -, encArg They will be analysed ascendingly in the following order: double < encArg half < encArg - < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if Lemmas: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n4_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n4_4)), rt in Omega(1 + n4_4) Generator Equations: gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) <=> 0' gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(x, 1)) <=> s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(x)) The following defined symbols remain to be analysed: half, -, encArg They will be analysed ascendingly in the following order: half < encArg - < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n296_4))) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n296_4), rt in Omega(1 + n296_4) Induction Base: half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, 0))) ->_R^Omega(1) 0' Induction Step: half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, +(n296_4, 1)))) ->_R^Omega(1) s(half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n296_4)))) ->_IH s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(c297_4)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if Lemmas: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n4_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n4_4)), rt in Omega(1 + n4_4) half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n296_4))) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n296_4), rt in Omega(1 + n296_4) Generator Equations: gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) <=> 0' gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(x, 1)) <=> s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(x)) The following defined symbols remain to be analysed: -, encArg They will be analysed ascendingly in the following order: - < encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4), gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0), rt in Omega(1 + n771_4) Induction Base: -(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0), gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0)) ->_R^Omega(1) gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) Induction Step: -(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(n771_4, 1)), gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(n771_4, 1))) ->_R^Omega(1) -(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4), gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4)) ->_IH gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: double(0') -> 0' double(s(x)) -> s(s(double(x))) half(0') -> 0' half(s(0')) -> 0' half(s(s(x))) -> s(half(x)) -(x, 0') -> x -(s(x), s(y)) -> -(x, y) if(0', y, z) -> y if(s(x), y, z) -> z half(double(x)) -> x encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encArg(cons_if(x_1, x_2, x_3)) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) encode_double(x_1) -> double(encArg(x_1)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) encode_if(x_1, x_2, x_3) -> if(encArg(x_1), encArg(x_2), encArg(x_3)) Types: double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if 0' :: 0':s:cons_double:cons_half:cons_-:cons_if s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if - :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encArg :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if cons_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_double :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_0 :: 0':s:cons_double:cons_half:cons_-:cons_if encode_s :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_half :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_- :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if encode_if :: 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if -> 0':s:cons_double:cons_half:cons_-:cons_if hole_0':s:cons_double:cons_half:cons_-:cons_if1_4 :: 0':s:cons_double:cons_half:cons_-:cons_if gen_0':s:cons_double:cons_half:cons_-:cons_if2_4 :: Nat -> 0':s:cons_double:cons_half:cons_-:cons_if Lemmas: double(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n4_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n4_4)), rt in Omega(1 + n4_4) half(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(*(2, n296_4))) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n296_4), rt in Omega(1 + n296_4) -(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4), gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n771_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0), rt in Omega(1 + n771_4) Generator Equations: gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0) <=> 0' gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(x, 1)) <=> s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n1127_4)) -> gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n1127_4), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(+(n1127_4, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(n1127_4))) ->_IH s(gen_0':s:cons_double:cons_half:cons_-:cons_if2_4(c1128_4)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)