/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 76 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsProof [FINISHED, 4 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(h(x)) -> f(i(x)) g(i(x)) -> g(h(x)) h(a) -> b i(a) -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(h(x)) -> f(i(x)) g(i(x)) -> g(h(x)) h(a) -> b i(a) -> b The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(h(x)) -> f(i(x)) g(i(x)) -> g(h(x)) h(a) -> b i(a) -> b The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(h(x)) -> f(i(x)) g(i(x)) -> g(h(x)) h(a) -> b i(a) -> b encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1)) -> f(encArg(x_1)) encArg(cons_g(x_1)) -> g(encArg(x_1)) encArg(cons_h(x_1)) -> h(encArg(x_1)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_f(x_1) -> f(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_i(x_1) -> i(encArg(x_1)) encode_g(x_1) -> g(encArg(x_1)) encode_a -> a encode_b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match Bound [MATCHBOUNDS1,MATCHBOUNDS2] of 2. The certificate found is represented by the following graph. "[62, 63, 64, 65, 66] {(62,63,[f_1|0, g_1|0, h_1|0, i_1|0, encArg_1|0, encode_f_1|0, encode_h_1|0, encode_i_1|0, encode_g_1|0, encode_a|0, encode_b|0, b|1, a|1, b|2]), (62,64,[f_1|1, g_1|1, h_1|1, i_1|1]), (62,65,[f_1|2]), (62,66,[g_1|2]), (63,63,[a|0, b|0, cons_f_1|0, cons_g_1|0, cons_h_1|0, cons_i_1|0]), (64,63,[encArg_1|1, a|1, b|1, b|2]), (64,64,[f_1|1, g_1|1, h_1|1, i_1|1]), (64,65,[f_1|2]), (64,66,[g_1|2]), (65,64,[i_1|2]), (65,63,[b|2]), (66,64,[h_1|2]), (66,63,[b|2])}" ---------------------------------------- (8) BOUNDS(1, n^1)