/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 166 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 49 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b) -> f(a, c) f(c, d) -> f(b, d) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b) -> f(a, c) f(c, d) -> f(b, d) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b) -> f(a, c) f(c, d) -> f(b, d) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, b) -> f(a, c) f(c, d) -> f(b, d) encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(d) -> d encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c encode_d -> d S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: a0() -> 0 b0() -> 0 c0() -> 0 d0() -> 0 cons_f0(0, 0) -> 0 f0(0, 0) -> 1 encArg0(0) -> 2 encode_f0(0, 0) -> 3 encode_a0() -> 4 encode_b0() -> 5 encode_c0() -> 6 encode_d0() -> 7 a1() -> 8 c1() -> 9 f1(8, 9) -> 1 b1() -> 10 d1() -> 11 f1(10, 11) -> 1 a1() -> 2 b1() -> 2 c1() -> 2 d1() -> 2 encArg1(0) -> 12 encArg1(0) -> 13 f1(12, 13) -> 2 f1(12, 13) -> 3 a1() -> 4 b1() -> 5 c1() -> 6 d1() -> 7 a1() -> 12 a1() -> 13 b1() -> 12 b1() -> 13 c1() -> 12 c1() -> 13 d1() -> 12 d1() -> 13 f1(12, 13) -> 12 f1(12, 13) -> 13 a2() -> 14 c2() -> 15 f2(14, 15) -> 2 f2(14, 15) -> 3 f2(14, 15) -> 12 f2(14, 15) -> 13 b2() -> 16 d2() -> 17 f2(16, 17) -> 2 f2(16, 17) -> 3 f2(16, 17) -> 12 f2(16, 17) -> 13 ---------------------------------------- (8) BOUNDS(1, n^1)