/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 145 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 3 ms] (10) CdtProblem (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (16) CdtProblem (17) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 225 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 153 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 533 ms] (24) CdtProblem (25) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 455 ms] (26) CdtProblem (27) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (28) BOUNDS(1, 1) (29) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxRelTRS (31) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (32) typed CpxTrs (33) OrderProof [LOWER BOUND(ID), 0 ms] (34) typed CpxTrs (35) RewriteLemmaProof [LOWER BOUND(ID), 207 ms] (36) proven lower bound (37) LowerBoundPropagationProof [FINISHED, 0 ms] (38) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: i(0) -> 0 +(0, y) -> y +(x, 0) -> x i(i(x)) -> x +(i(x), x) -> 0 +(x, i(x)) -> 0 i(+(x, y)) -> +(i(x), i(y)) +(x, +(y, z)) -> +(+(x, y), z) +(+(x, i(y)), y) -> x +(+(x, y), i(y)) -> x S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0 encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: i(0) -> 0 +(0, y) -> y +(x, 0) -> x i(i(x)) -> x +(i(x), x) -> 0 +(x, i(x)) -> 0 i(+(x, y)) -> +(i(x), i(y)) +(x, +(y, z)) -> +(+(x, y), z) +(+(x, i(y)), y) -> x +(+(x, y), i(y)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0 encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: i(0) -> 0 +(0, y) -> y +(x, 0) -> x i(i(x)) -> x +(i(x), x) -> 0 +(x, i(x)) -> 0 i(+(x, y)) -> +(i(x), i(y)) +(x, +(y, z)) -> +(+(x, y), z) +(+(x, i(y)), y) -> x +(+(x, y), i(y)) -> x The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0 encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: i(0) -> 0 +(0, y) -> y +(x, 0) -> x +(c_+(x, c_i(y)), y) -> x +(c_+(x, y), c_i(y)) -> x i(c_i(x)) -> x +(c_i(x), x) -> 0 +(x, c_i(x)) -> 0 +(x, c_+(y, z)) -> +(+(x, y), z) i(c_+(x, y)) -> +(i(x), i(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0 encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) +(x0, x1) -> c_+(x0, x1) i(x0) -> c_i(x0) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: i(0) -> 0 +(0, y) -> y +(x, 0) -> x +(c_+(x, c_i(y)), y) -> x +(c_+(x, y), c_i(y)) -> x i(c_i(x)) -> x +(c_i(x), x) -> 0 +(x, c_i(x)) -> 0 +(x, c_+(y, z)) -> +(+(x, y), z) i(c_+(x, y)) -> +(i(x), i(y)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0 encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) +(x0, x1) -> c_+(x0, x1) i(x0) -> c_i(x0) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_0 -> 0 encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) Tuples: ENCARG(0) -> c ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_I(z0) -> c3(I(encArg(z0)), ENCARG(z0)) ENCODE_0 -> c4 ENCODE_+(z0, z1) -> c5(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(z0, z1) -> c6 +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(z0) -> c14 I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) K tuples:none Defined Rule Symbols: i_1, +_2, encArg_1, encode_i_1, encode_0, encode_+_2 Defined Pair Symbols: ENCARG_1, ENCODE_I_1, ENCODE_0, ENCODE_+_2, +'_2, I_1 Compound Symbols: c, c1_2, c2_3, c3_2, c4, c5_3, c6, c7, c8, c9, c10, c11, c12, c13_2, c14, c15, c16, c17_3 ---------------------------------------- (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ENCARG(0) -> c ENCODE_0 -> c4 I(z0) -> c14 +'(z0, z1) -> c6 ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_0 -> 0 encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_I(z0) -> c3(I(encArg(z0)), ENCARG(z0)) ENCODE_+(z0, z1) -> c5(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) K tuples:none Defined Rule Symbols: i_1, +_2, encArg_1, encode_i_1, encode_0, encode_+_2 Defined Pair Symbols: ENCARG_1, ENCODE_I_1, ENCODE_+_2, +'_2, I_1 Compound Symbols: c1_2, c2_3, c3_2, c5_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3 ---------------------------------------- (13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_0 -> 0 encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_I(z0) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) ENCODE_+(z0, z1) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(ENCARG(z1)) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) K tuples:none Defined Rule Symbols: i_1, +_2, encArg_1, encode_i_1, encode_0, encode_+_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (15) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_I(z0) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(ENCARG(z0)) ENCODE_+(z0, z1) -> c(ENCARG(z1)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) encode_i(z0) -> i(encArg(z0)) encode_0 -> 0 encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) K tuples:none Defined Rule Symbols: i_1, +_2, encArg_1, encode_i_1, encode_0, encode_+_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (17) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_i(z0) -> i(encArg(z0)) encode_0 -> 0 encode_+(z0, z1) -> +(encArg(z0), encArg(z1)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) K tuples:none Defined Rule Symbols: encArg_1, i_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. I(0) -> c15 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) We considered the (Usable) Rules: i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) encArg(cons_i(z0)) -> i(encArg(z0)) encArg(0) -> 0 i(c_i(z0)) -> z0 i(0) -> 0 encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(+'(x_1, x_2)) = 0 POL(0) = [1] POL(ENCARG(x_1)) = [2]x_1 + [2]x_1^2 POL(ENCODE_+(x_1, x_2)) = [2] + x_1 + x_2 + [2]x_2^2 + x_1*x_2 + [2]x_1^2 POL(ENCODE_I(x_1)) = [1] + [2]x_1 + x_1^2 POL(I(x_1)) = x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1, x_2)) = x_1 + x_2 POL(c15) = 0 POL(c16) = 0 POL(c17(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7) = 0 POL(c8) = 0 POL(c9) = 0 POL(c_+(x_1, x_2)) = [2] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_+(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = [1] + [2]x_1 POL(i(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(c_i(z0)) -> c16 K tuples: I(0) -> c15 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) Defined Rule Symbols: encArg_1, i_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. I(c_i(z0)) -> c16 We considered the (Usable) Rules: i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) encArg(cons_i(z0)) -> i(encArg(z0)) encArg(0) -> 0 i(c_i(z0)) -> z0 i(0) -> 0 encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [2] + x_1 + x_2 POL(+'(x_1, x_2)) = 0 POL(0) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_+(x_1, x_2)) = [2] + [2]x_1 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_I(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(I(x_1)) = [2] + x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1, x_2)) = x_1 + x_2 POL(c15) = 0 POL(c16) = 0 POL(c17(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7) = 0 POL(c8) = 0 POL(c9) = 0 POL(c_+(x_1, x_2)) = [2] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_+(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_i(x_1)) = [2] + x_1 POL(encArg(x_1)) = [2]x_1 POL(i(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples: +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) K tuples: I(0) -> c15 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) I(c_i(z0)) -> c16 Defined Rule Symbols: encArg_1, i_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(z0, 0) -> c8 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) We considered the (Usable) Rules: i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) encArg(cons_i(z0)) -> i(encArg(z0)) encArg(0) -> 0 i(c_i(z0)) -> z0 i(0) -> 0 encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(+'(x_1, x_2)) = x_2 POL(0) = [1] POL(ENCARG(x_1)) = x_1^2 + x_1^3 POL(ENCODE_+(x_1, x_2)) = x_2 POL(ENCODE_I(x_1)) = x_1^2 POL(I(x_1)) = x_1^2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1, x_2)) = x_1 + x_2 POL(c15) = 0 POL(c16) = 0 POL(c17(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7) = 0 POL(c8) = 0 POL(c9) = 0 POL(c_+(x_1, x_2)) = [1] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_+(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples: +'(0, z0) -> c7 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 K tuples: I(0) -> c15 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) I(c_i(z0)) -> c16 +'(z0, 0) -> c8 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) Defined Rule Symbols: encArg_1, i_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. +'(0, z0) -> c7 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 We considered the (Usable) Rules: i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) encArg(cons_i(z0)) -> i(encArg(z0)) encArg(0) -> 0 i(c_i(z0)) -> z0 i(0) -> 0 encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) The order we found is given by the following interpretation: Polynomial interpretation : POL(+(x_1, x_2)) = [1] + x_1 + x_2 POL(+'(x_1, x_2)) = [1] + x_2 POL(0) = [1] POL(ENCARG(x_1)) = x_1 + x_1^3 POL(ENCODE_+(x_1, x_2)) = [1] + x_2 POL(ENCODE_I(x_1)) = x_1 + x_1^2 POL(I(x_1)) = x_1 + x_1^2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2)) = x_1 + x_2 POL(c10) = 0 POL(c11) = 0 POL(c12) = 0 POL(c13(x_1, x_2)) = x_1 + x_2 POL(c15) = 0 POL(c16) = 0 POL(c17(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c2(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c7) = 0 POL(c8) = 0 POL(c9) = 0 POL(c_+(x_1, x_2)) = [1] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_+(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(0) -> 0 encArg(cons_i(z0)) -> i(encArg(z0)) encArg(cons_+(z0, z1)) -> +(encArg(z0), encArg(z1)) i(z0) -> c_i(z0) i(0) -> 0 i(c_i(z0)) -> z0 i(c_+(z0, z1)) -> +(i(z0), i(z1)) +(z0, z1) -> c_+(z0, z1) +(0, z0) -> z0 +(z0, 0) -> z0 +(c_+(z0, c_i(z1)), z1) -> z0 +(c_+(z0, z1), c_i(z1)) -> z0 +(c_i(z0), z0) -> 0 +(z0, c_i(z0)) -> 0 +(z0, c_+(z1, z2)) -> +(+(z0, z1), z2) Tuples: ENCARG(cons_i(z0)) -> c1(I(encArg(z0)), ENCARG(z0)) ENCARG(cons_+(z0, z1)) -> c2(+'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) +'(0, z0) -> c7 +'(z0, 0) -> c8 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) I(0) -> c15 I(c_i(z0)) -> c16 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_+(z0, z1) -> c(+'(encArg(z0), encArg(z1))) S tuples:none K tuples: I(0) -> c15 I(c_+(z0, z1)) -> c17(+'(i(z0), i(z1)), I(z0), I(z1)) I(c_i(z0)) -> c16 +'(z0, 0) -> c8 +'(z0, c_+(z1, z2)) -> c13(+'(+(z0, z1), z2), +'(z0, z1)) +'(0, z0) -> c7 +'(c_+(z0, c_i(z1)), z1) -> c9 +'(c_+(z0, z1), c_i(z1)) -> c10 +'(c_i(z0), z0) -> c11 +'(z0, c_i(z0)) -> c12 Defined Rule Symbols: encArg_1, i_1, +_2 Defined Pair Symbols: ENCARG_1, +'_2, I_1, ENCODE_I_1, ENCODE_+_2 Compound Symbols: c1_2, c2_3, c7, c8, c9, c10, c11, c12, c13_2, c15, c16, c17_3, c_1 ---------------------------------------- (27) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (28) BOUNDS(1, 1) ---------------------------------------- (29) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (30) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: i(0') -> 0' +'(0', y) -> y +'(x, 0') -> x i(i(x)) -> x +'(i(x), x) -> 0' +'(x, i(x)) -> 0' i(+'(x, y)) -> +'(i(x), i(y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) +'(+'(x, i(y)), y) -> x +'(+'(x, y), i(y)) -> x The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0' encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (31) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (32) Obligation: TRS: Rules: i(0') -> 0' +'(0', y) -> y +'(x, 0') -> x i(i(x)) -> x +'(i(x), x) -> 0' +'(x, i(x)) -> 0' i(+'(x, y)) -> +'(i(x), i(y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) +'(+'(x, i(y)), y) -> x +'(+'(x, y), i(y)) -> x encArg(0') -> 0' encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0' encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ 0' :: 0':cons_i:cons_+ +' :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encArg :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_0 :: 0':cons_i:cons_+ encode_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ hole_0':cons_i:cons_+1_3 :: 0':cons_i:cons_+ gen_0':cons_i:cons_+2_3 :: Nat -> 0':cons_i:cons_+ ---------------------------------------- (33) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: i, +', encArg They will be analysed ascendingly in the following order: +' < i i < encArg +' < encArg ---------------------------------------- (34) Obligation: TRS: Rules: i(0') -> 0' +'(0', y) -> y +'(x, 0') -> x i(i(x)) -> x +'(i(x), x) -> 0' +'(x, i(x)) -> 0' i(+'(x, y)) -> +'(i(x), i(y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) +'(+'(x, i(y)), y) -> x +'(+'(x, y), i(y)) -> x encArg(0') -> 0' encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0' encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ 0' :: 0':cons_i:cons_+ +' :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encArg :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_0 :: 0':cons_i:cons_+ encode_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ hole_0':cons_i:cons_+1_3 :: 0':cons_i:cons_+ gen_0':cons_i:cons_+2_3 :: Nat -> 0':cons_i:cons_+ Generator Equations: gen_0':cons_i:cons_+2_3(0) <=> 0' gen_0':cons_i:cons_+2_3(+(x, 1)) <=> cons_i(gen_0':cons_i:cons_+2_3(x)) The following defined symbols remain to be analysed: +', i, encArg They will be analysed ascendingly in the following order: +' < i i < encArg +' < encArg ---------------------------------------- (35) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':cons_i:cons_+2_3(n155_3)) -> gen_0':cons_i:cons_+2_3(0), rt in Omega(n155_3) Induction Base: encArg(gen_0':cons_i:cons_+2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':cons_i:cons_+2_3(+(n155_3, 1))) ->_R^Omega(0) i(encArg(gen_0':cons_i:cons_+2_3(n155_3))) ->_IH i(gen_0':cons_i:cons_+2_3(0)) ->_R^Omega(1) 0' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (36) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: i(0') -> 0' +'(0', y) -> y +'(x, 0') -> x i(i(x)) -> x +'(i(x), x) -> 0' +'(x, i(x)) -> 0' i(+'(x, y)) -> +'(i(x), i(y)) +'(x, +'(y, z)) -> +'(+'(x, y), z) +'(+'(x, i(y)), y) -> x +'(+'(x, y), i(y)) -> x encArg(0') -> 0' encArg(cons_i(x_1)) -> i(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encode_i(x_1) -> i(encArg(x_1)) encode_0 -> 0' encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) Types: i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ 0' :: 0':cons_i:cons_+ +' :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encArg :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ cons_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_i :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ encode_0 :: 0':cons_i:cons_+ encode_+ :: 0':cons_i:cons_+ -> 0':cons_i:cons_+ -> 0':cons_i:cons_+ hole_0':cons_i:cons_+1_3 :: 0':cons_i:cons_+ gen_0':cons_i:cons_+2_3 :: Nat -> 0':cons_i:cons_+ Generator Equations: gen_0':cons_i:cons_+2_3(0) <=> 0' gen_0':cons_i:cons_+2_3(+(x, 1)) <=> cons_i(gen_0':cons_i:cons_+2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (37) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (38) BOUNDS(n^1, INF)