/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 179 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 53 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, x) -> g(a, x) g(a, x) -> f(b, x) f(a, x) -> f(b, x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_b -> b ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, x) -> g(a, x) g(a, x) -> f(b, x) f(a, x) -> f(b, x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, x) -> g(a, x) g(a, x) -> f(b, x) f(a, x) -> f(b, x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_b -> b Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, x) -> g(a, x) g(a, x) -> f(b, x) f(a, x) -> f(b, x) encArg(a) -> a encArg(b) -> b encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_b -> b S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5, 6, 7] transitions: a0() -> 0 b0() -> 0 cons_f0(0, 0) -> 0 cons_g0(0, 0) -> 0 f0(0, 0) -> 1 g0(0, 0) -> 2 encArg0(0) -> 3 encode_f0(0, 0) -> 4 encode_a0() -> 5 encode_g0(0, 0) -> 6 encode_b0() -> 7 a1() -> 8 g1(8, 0) -> 1 b1() -> 9 f1(9, 0) -> 2 f1(9, 0) -> 1 a1() -> 3 b1() -> 3 encArg1(0) -> 10 encArg1(0) -> 11 f1(10, 11) -> 3 encArg1(0) -> 12 encArg1(0) -> 13 g1(12, 13) -> 3 f1(10, 11) -> 4 a1() -> 5 g1(12, 13) -> 6 b1() -> 7 b2() -> 14 f2(14, 0) -> 1 a1() -> 10 a1() -> 11 a1() -> 12 a1() -> 13 b1() -> 10 b1() -> 11 b1() -> 12 b1() -> 13 f1(10, 11) -> 10 f1(10, 11) -> 11 f1(10, 11) -> 12 f1(10, 11) -> 13 g1(12, 13) -> 10 g1(12, 13) -> 11 g1(12, 13) -> 12 g1(12, 13) -> 13 a2() -> 15 g2(15, 11) -> 3 g2(15, 11) -> 4 g2(15, 11) -> 10 g2(15, 11) -> 11 g2(15, 11) -> 12 g2(15, 11) -> 13 f2(14, 13) -> 3 f2(14, 13) -> 6 f2(14, 13) -> 10 f2(14, 13) -> 11 f2(14, 13) -> 12 f2(14, 13) -> 13 f2(14, 11) -> 3 f2(14, 11) -> 4 f2(14, 11) -> 10 f2(14, 11) -> 11 f2(14, 11) -> 12 f2(14, 11) -> 13 b3() -> 16 f3(16, 11) -> 3 f3(16, 11) -> 4 f3(16, 11) -> 10 f3(16, 11) -> 11 f3(16, 11) -> 12 f3(16, 11) -> 13 ---------------------------------------- (8) BOUNDS(1, n^1)