/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 96 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) CpxWeightedTrsRenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] (16) CpxTypedWeightedCompleteTrs (17) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (18) CpxRNTS (19) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (22) CpxRNTS (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 374 ms] (26) CpxRNTS (27) IntTrsBoundProof [UPPER BOUND(ID), 120 ms] (28) CpxRNTS (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 4 ms] (32) CpxRNTS (33) IntTrsBoundProof [UPPER BOUND(ID), 12 ms] (34) CpxRNTS (35) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 331 ms] (38) CpxRNTS (39) IntTrsBoundProof [UPPER BOUND(ID), 96 ms] (40) CpxRNTS (41) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 363 ms] (44) CpxRNTS (45) IntTrsBoundProof [UPPER BOUND(ID), 166 ms] (46) CpxRNTS (47) ResultPropagationProof [UPPER BOUND(ID), 1 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 209 ms] (50) CpxRNTS (51) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] (56) CpxRNTS (57) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 178 ms] (62) CpxRNTS (63) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (64) CpxRNTS (65) FinalProof [FINISHED, 0 ms] (66) BOUNDS(1, n^2) (67) RenamingProof [BOTH BOUNDS(ID, ID), 1 ms] (68) CpxRelTRS (69) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (70) typed CpxTrs (71) OrderProof [LOWER BOUND(ID), 0 ms] (72) typed CpxTrs (73) RewriteLemmaProof [LOWER BOUND(ID), 296 ms] (74) BEST (75) proven lower bound (76) LowerBoundPropagationProof [FINISHED, 0 ms] (77) BOUNDS(n^1, INF) (78) typed CpxTrs (79) RewriteLemmaProof [LOWER BOUND(ID), 32 ms] (80) typed CpxTrs (81) RewriteLemmaProof [LOWER BOUND(ID), 48 ms] (82) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) -(0, y) -> 0 -(x, 0) -> x -(s(x), s(y)) -> -(x, y) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) -(0, y) -> 0 -(x, 0) -> x -(s(x), s(y)) -> -(x, y) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) -(0, y) -> 0 -(x, 0) -> x -(s(x), s(y)) -> -(x, y) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(0, y) -> y +(s(x), y) -> s(+(x, y)) -(0, y) -> 0 -(x, 0) -> x -(s(x), s(y)) -> -(x, y) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: +(0, y) -> y [1] +(s(x), y) -> s(+(x, y)) [1] -(0, y) -> 0 [1] -(x, 0) -> x [1] -(s(x), s(y)) -> -(x, y) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> +(encArg(x_1), encArg(x_2)) [0] encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> +(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID)) Renamed defined symbols to avoid conflicts with arithmetic symbols: + => plus - => minus ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- 0 :: 0:s:cons_+:cons_- s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- minus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encArg :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_0 :: 0:s:cons_+:cons_- encode_s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: minus_2 plus_2 encArg_1 encode_+_2 encode_0 encode_s_1 encode_-_2 Due to the following rules being added: encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] minus(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] And the following fresh constants: none ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] minus(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- 0 :: 0:s:cons_+:cons_- s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- minus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encArg :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_0 :: 0:s:cons_+:cons_- encode_s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- Rewrite Strategy: INNERMOST ---------------------------------------- (15) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (16) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: plus(0, y) -> y [1] plus(s(x), y) -> s(plus(x, y)) [1] minus(0, y) -> 0 [1] minus(x, 0) -> x [1] minus(s(x), s(y)) -> minus(x, y) [1] encArg(0) -> 0 [0] encArg(s(x_1)) -> s(encArg(x_1)) [0] encArg(cons_+(x_1, x_2)) -> plus(encArg(x_1), encArg(x_2)) [0] encArg(cons_-(x_1, x_2)) -> minus(encArg(x_1), encArg(x_2)) [0] encode_+(x_1, x_2) -> plus(encArg(x_1), encArg(x_2)) [0] encode_0 -> 0 [0] encode_s(x_1) -> s(encArg(x_1)) [0] encode_-(x_1, x_2) -> minus(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> 0 [0] encode_+(v0, v1) -> 0 [0] encode_0 -> 0 [0] encode_s(v0) -> 0 [0] encode_-(v0, v1) -> 0 [0] minus(v0, v1) -> 0 [0] plus(v0, v1) -> 0 [0] The TRS has the following type information: plus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- 0 :: 0:s:cons_+:cons_- s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- minus :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encArg :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- cons_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_+ :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_0 :: 0:s:cons_+:cons_- encode_s :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- encode_- :: 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- -> 0:s:cons_+:cons_- Rewrite Strategy: INNERMOST ---------------------------------------- (17) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: 0 => 0 ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) :|: z = 1 + x_1, x_1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_+(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_-(z, z') -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_-(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_s(z) -{ 0 }-> 1 + encArg(x_1) :|: x_1 >= 0, z = x_1 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x minus(z, z') -{ 1 }-> 0 :|: y >= 0, z = 0, z' = y minus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> y :|: y >= 0, z = 0, z' = y plus(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 plus(z, z') -{ 1 }-> 1 + plus(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y ---------------------------------------- (19) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 ---------------------------------------- (21) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { minus } { encode_0 } { plus } { encArg } { encode_- } { encode_+ } { encode_s } ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} ---------------------------------------- (23) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {minus}, {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: ?, size: O(n^1) [z] ---------------------------------------- (27) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: minus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z' ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] ---------------------------------------- (29) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_0}, {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: ?, size: O(1) [0] ---------------------------------------- (33) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_0 after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {plus}, {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (39) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: plus after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (41) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (45) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> plus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> minus(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(z - 1) :|: z - 1 >= 0 encode_+(z, z') -{ 0 }-> plus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> minus(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ 0 }-> 1 + encArg(z) :|: z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (47) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_- after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_-}, {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: ?, size: O(n^1) [z] ---------------------------------------- (51) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_- after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + z + z^2 + 2*z' + z'^2 ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (53) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_+ after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_+}, {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] encode_+: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (57) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_+ after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + 2*z + z^2 + z' + z'^2 ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] encode_+: runtime: O(n^2) [1 + 2*z + z^2 + z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (59) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] encode_+: runtime: O(n^2) [1 + 2*z + z^2 + z' + z'^2], size: O(n^1) [z + z'] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: {encode_s} Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] encode_+: runtime: O(n^2) [1 + 2*z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_s: runtime: ?, size: O(n^1) [1 + z] ---------------------------------------- (63) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_s after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: z + z^2 ---------------------------------------- (64) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 1 + s1 + x_1 + x_1^2 + x_2 + x_2^2 }-> s3 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, s3 >= 0, s3 <= s1 + s2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 2 + s5 + x_1 + x_1^2 + x_2 + x_2^2 }-> s6 :|: s4 >= 0, s4 <= x_1, s5 >= 0, s5 <= x_2, s6 >= 0, s6 <= s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ -1*z + z^2 }-> 1 + s'' :|: s'' >= 0, s'' <= z - 1, z - 1 >= 0 encode_+(z, z') -{ 1 + s7 + z + z^2 + z' + z'^2 }-> s9 :|: s7 >= 0, s7 <= z, s8 >= 0, s8 <= z', s9 >= 0, s9 <= s7 + s8, z >= 0, z' >= 0 encode_+(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_-(z, z') -{ 2 + s12 + z + z^2 + z' + z'^2 }-> s13 :|: s11 >= 0, s11 <= z, s12 >= 0, s12 <= z', s13 >= 0, s13 <= s11, z >= 0, z' >= 0 encode_-(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_0 -{ 0 }-> 0 :|: encode_s(z) -{ 0 }-> 0 :|: z >= 0 encode_s(z) -{ z + z^2 }-> 1 + s10 :|: s10 >= 0, s10 <= z, z >= 0 minus(z, z') -{ 2 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 minus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 plus(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 plus(z, z') -{ 1 + z }-> 1 + s' :|: s' >= 0, s' <= z - 1 + z', z - 1 >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: minus: runtime: O(n^1) [2 + z'], size: O(n^1) [z] encode_0: runtime: O(1) [0], size: O(1) [0] plus: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [z + z^2], size: O(n^1) [z] encode_-: runtime: O(n^2) [2 + z + z^2 + 2*z' + z'^2], size: O(n^1) [z] encode_+: runtime: O(n^2) [1 + 2*z + z^2 + z' + z'^2], size: O(n^1) [z + z'] encode_s: runtime: O(n^2) [z + z^2], size: O(n^1) [1 + z] ---------------------------------------- (65) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (66) BOUNDS(1, n^2) ---------------------------------------- (67) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (68) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) The (relative) TRS S consists of the following rules: encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (69) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (70) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- 0' :: 0':s:cons_+:cons_- s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- - :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encArg :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_0 :: 0':s:cons_+:cons_- encode_s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- hole_0':s:cons_+:cons_-1_3 :: 0':s:cons_+:cons_- gen_0':s:cons_+:cons_-2_3 :: Nat -> 0':s:cons_+:cons_- ---------------------------------------- (71) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: +', -, encArg They will be analysed ascendingly in the following order: +' < encArg - < encArg ---------------------------------------- (72) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- 0' :: 0':s:cons_+:cons_- s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- - :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encArg :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_0 :: 0':s:cons_+:cons_- encode_s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- hole_0':s:cons_+:cons_-1_3 :: 0':s:cons_+:cons_- gen_0':s:cons_+:cons_-2_3 :: Nat -> 0':s:cons_+:cons_- Generator Equations: gen_0':s:cons_+:cons_-2_3(0) <=> 0' gen_0':s:cons_+:cons_-2_3(+(x, 1)) <=> s(gen_0':s:cons_+:cons_-2_3(x)) The following defined symbols remain to be analysed: +', -, encArg They will be analysed ascendingly in the following order: +' < encArg - < encArg ---------------------------------------- (73) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: +'(gen_0':s:cons_+:cons_-2_3(n4_3), gen_0':s:cons_+:cons_-2_3(b)) -> gen_0':s:cons_+:cons_-2_3(+(n4_3, b)), rt in Omega(1 + n4_3) Induction Base: +'(gen_0':s:cons_+:cons_-2_3(0), gen_0':s:cons_+:cons_-2_3(b)) ->_R^Omega(1) gen_0':s:cons_+:cons_-2_3(b) Induction Step: +'(gen_0':s:cons_+:cons_-2_3(+(n4_3, 1)), gen_0':s:cons_+:cons_-2_3(b)) ->_R^Omega(1) s(+'(gen_0':s:cons_+:cons_-2_3(n4_3), gen_0':s:cons_+:cons_-2_3(b))) ->_IH s(gen_0':s:cons_+:cons_-2_3(+(b, c5_3))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (74) Complex Obligation (BEST) ---------------------------------------- (75) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- 0' :: 0':s:cons_+:cons_- s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- - :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encArg :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_0 :: 0':s:cons_+:cons_- encode_s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- hole_0':s:cons_+:cons_-1_3 :: 0':s:cons_+:cons_- gen_0':s:cons_+:cons_-2_3 :: Nat -> 0':s:cons_+:cons_- Generator Equations: gen_0':s:cons_+:cons_-2_3(0) <=> 0' gen_0':s:cons_+:cons_-2_3(+(x, 1)) <=> s(gen_0':s:cons_+:cons_-2_3(x)) The following defined symbols remain to be analysed: +', -, encArg They will be analysed ascendingly in the following order: +' < encArg - < encArg ---------------------------------------- (76) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (77) BOUNDS(n^1, INF) ---------------------------------------- (78) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- 0' :: 0':s:cons_+:cons_- s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- - :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encArg :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_0 :: 0':s:cons_+:cons_- encode_s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- hole_0':s:cons_+:cons_-1_3 :: 0':s:cons_+:cons_- gen_0':s:cons_+:cons_-2_3 :: Nat -> 0':s:cons_+:cons_- Lemmas: +'(gen_0':s:cons_+:cons_-2_3(n4_3), gen_0':s:cons_+:cons_-2_3(b)) -> gen_0':s:cons_+:cons_-2_3(+(n4_3, b)), rt in Omega(1 + n4_3) Generator Equations: gen_0':s:cons_+:cons_-2_3(0) <=> 0' gen_0':s:cons_+:cons_-2_3(+(x, 1)) <=> s(gen_0':s:cons_+:cons_-2_3(x)) The following defined symbols remain to be analysed: -, encArg They will be analysed ascendingly in the following order: - < encArg ---------------------------------------- (79) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: -(gen_0':s:cons_+:cons_-2_3(n565_3), gen_0':s:cons_+:cons_-2_3(n565_3)) -> gen_0':s:cons_+:cons_-2_3(0), rt in Omega(1 + n565_3) Induction Base: -(gen_0':s:cons_+:cons_-2_3(0), gen_0':s:cons_+:cons_-2_3(0)) ->_R^Omega(1) 0' Induction Step: -(gen_0':s:cons_+:cons_-2_3(+(n565_3, 1)), gen_0':s:cons_+:cons_-2_3(+(n565_3, 1))) ->_R^Omega(1) -(gen_0':s:cons_+:cons_-2_3(n565_3), gen_0':s:cons_+:cons_-2_3(n565_3)) ->_IH gen_0':s:cons_+:cons_-2_3(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (80) Obligation: TRS: Rules: +'(0', y) -> y +'(s(x), y) -> s(+'(x, y)) -(0', y) -> 0' -(x, 0') -> x -(s(x), s(y)) -> -(x, y) encArg(0') -> 0' encArg(s(x_1)) -> s(encArg(x_1)) encArg(cons_+(x_1, x_2)) -> +'(encArg(x_1), encArg(x_2)) encArg(cons_-(x_1, x_2)) -> -(encArg(x_1), encArg(x_2)) encode_+(x_1, x_2) -> +'(encArg(x_1), encArg(x_2)) encode_0 -> 0' encode_s(x_1) -> s(encArg(x_1)) encode_-(x_1, x_2) -> -(encArg(x_1), encArg(x_2)) Types: +' :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- 0' :: 0':s:cons_+:cons_- s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- - :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encArg :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- cons_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_+ :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_0 :: 0':s:cons_+:cons_- encode_s :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- encode_- :: 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- -> 0':s:cons_+:cons_- hole_0':s:cons_+:cons_-1_3 :: 0':s:cons_+:cons_- gen_0':s:cons_+:cons_-2_3 :: Nat -> 0':s:cons_+:cons_- Lemmas: +'(gen_0':s:cons_+:cons_-2_3(n4_3), gen_0':s:cons_+:cons_-2_3(b)) -> gen_0':s:cons_+:cons_-2_3(+(n4_3, b)), rt in Omega(1 + n4_3) -(gen_0':s:cons_+:cons_-2_3(n565_3), gen_0':s:cons_+:cons_-2_3(n565_3)) -> gen_0':s:cons_+:cons_-2_3(0), rt in Omega(1 + n565_3) Generator Equations: gen_0':s:cons_+:cons_-2_3(0) <=> 0' gen_0':s:cons_+:cons_-2_3(+(x, 1)) <=> s(gen_0':s:cons_+:cons_-2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (81) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_0':s:cons_+:cons_-2_3(n839_3)) -> gen_0':s:cons_+:cons_-2_3(n839_3), rt in Omega(0) Induction Base: encArg(gen_0':s:cons_+:cons_-2_3(0)) ->_R^Omega(0) 0' Induction Step: encArg(gen_0':s:cons_+:cons_-2_3(+(n839_3, 1))) ->_R^Omega(0) s(encArg(gen_0':s:cons_+:cons_-2_3(n839_3))) ->_IH s(gen_0':s:cons_+:cons_-2_3(c840_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (82) BOUNDS(1, INF)