/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 175 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 492 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 429 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) The (relative) TRS S consists of the following rules: encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) The (relative) TRS S consists of the following rules: encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) The (relative) TRS S consists of the following rules: encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Types: not :: or:and:cons_not -> or:and:cons_not or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encArg :: or:and:cons_not -> or:and:cons_not cons_not :: or:and:cons_not -> or:and:cons_not encode_not :: or:and:cons_not -> or:and:cons_not encode_or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encode_and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not hole_or:and:cons_not1_0 :: or:and:cons_not gen_or:and:cons_not2_0 :: Nat -> or:and:cons_not ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: not, encArg They will be analysed ascendingly in the following order: not < encArg ---------------------------------------- (10) Obligation: TRS: Rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Types: not :: or:and:cons_not -> or:and:cons_not or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encArg :: or:and:cons_not -> or:and:cons_not cons_not :: or:and:cons_not -> or:and:cons_not encode_not :: or:and:cons_not -> or:and:cons_not encode_or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encode_and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not hole_or:and:cons_not1_0 :: or:and:cons_not gen_or:and:cons_not2_0 :: Nat -> or:and:cons_not Generator Equations: gen_or:and:cons_not2_0(0) <=> hole_or:and:cons_not1_0 gen_or:and:cons_not2_0(+(x, 1)) <=> or(hole_or:and:cons_not1_0, gen_or:and:cons_not2_0(x)) The following defined symbols remain to be analysed: not, encArg They will be analysed ascendingly in the following order: not < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: not(gen_or:and:cons_not2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Induction Base: not(gen_or:and:cons_not2_0(0)) Induction Step: not(gen_or:and:cons_not2_0(+(n4_0, 1))) ->_R^Omega(1) and(not(not(not(hole_or:and:cons_not1_0))), not(not(not(gen_or:and:cons_not2_0(n4_0))))) ->_R^Omega(1) and(not(hole_or:and:cons_not1_0), not(not(not(gen_or:and:cons_not2_0(n4_0))))) ->_IH and(not(hole_or:and:cons_not1_0), not(not(*3_0))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Types: not :: or:and:cons_not -> or:and:cons_not or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encArg :: or:and:cons_not -> or:and:cons_not cons_not :: or:and:cons_not -> or:and:cons_not encode_not :: or:and:cons_not -> or:and:cons_not encode_or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encode_and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not hole_or:and:cons_not1_0 :: or:and:cons_not gen_or:and:cons_not2_0 :: Nat -> or:and:cons_not Generator Equations: gen_or:and:cons_not2_0(0) <=> hole_or:and:cons_not1_0 gen_or:and:cons_not2_0(+(x, 1)) <=> or(hole_or:and:cons_not1_0, gen_or:and:cons_not2_0(x)) The following defined symbols remain to be analysed: not, encArg They will be analysed ascendingly in the following order: not < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: not(not(x)) -> x not(or(x, y)) -> and(not(not(not(x))), not(not(not(y)))) not(and(x, y)) -> or(not(not(not(x))), not(not(not(y)))) encArg(or(x_1, x_2)) -> or(encArg(x_1), encArg(x_2)) encArg(and(x_1, x_2)) -> and(encArg(x_1), encArg(x_2)) encArg(cons_not(x_1)) -> not(encArg(x_1)) encode_not(x_1) -> not(encArg(x_1)) encode_or(x_1, x_2) -> or(encArg(x_1), encArg(x_2)) encode_and(x_1, x_2) -> and(encArg(x_1), encArg(x_2)) Types: not :: or:and:cons_not -> or:and:cons_not or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encArg :: or:and:cons_not -> or:and:cons_not cons_not :: or:and:cons_not -> or:and:cons_not encode_not :: or:and:cons_not -> or:and:cons_not encode_or :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not encode_and :: or:and:cons_not -> or:and:cons_not -> or:and:cons_not hole_or:and:cons_not1_0 :: or:and:cons_not gen_or:and:cons_not2_0 :: Nat -> or:and:cons_not Lemmas: not(gen_or:and:cons_not2_0(n4_0)) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_or:and:cons_not2_0(0) <=> hole_or:and:cons_not1_0 gen_or:and:cons_not2_0(+(x, 1)) <=> or(hole_or:and:cons_not1_0, gen_or:and:cons_not2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_or:and:cons_not2_0(+(1, n9906_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_or:and:cons_not2_0(+(1, 0))) Induction Step: encArg(gen_or:and:cons_not2_0(+(1, +(n9906_0, 1)))) ->_R^Omega(0) or(encArg(hole_or:and:cons_not1_0), encArg(gen_or:and:cons_not2_0(+(1, n9906_0)))) ->_IH or(encArg(hole_or:and:cons_not1_0), *3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)