/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^3)) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 152 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] (10) CdtProblem (11) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CdtProblem (13) CdtGraphSplitRhsProof [BOTH BOUNDS(ID, ID), 0 ms] (14) CdtProblem (15) CdtLeafRemovalProof [ComplexityIfPolyImplication, 0 ms] (16) CdtProblem (17) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] (18) CdtProblem (19) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 268 ms] (20) CdtProblem (21) CdtRuleRemovalProof [UPPER BOUND(ADD(n^2)), 132 ms] (22) CdtProblem (23) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 545 ms] (24) CdtProblem (25) CdtRuleRemovalProof [UPPER BOUND(ADD(n^3)), 405 ms] (26) CdtProblem (27) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] (28) BOUNDS(1, 1) (29) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (30) CpxRelTRS (31) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (32) typed CpxTrs (33) OrderProof [LOWER BOUND(ID), 0 ms] (34) typed CpxTrs (35) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] (36) proven lower bound (37) LowerBoundPropagationProof [FINISHED, 0 ms] (38) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^3). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x .(i(x), x) -> 1 .(x, i(x)) -> 1 i(1) -> 1 i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x i(1) -> 1 .(c_i(x), x) -> 1 .(x, c_i(x)) -> 1 i(c_i(x)) -> x .(c_.(x, y), z) -> .(x, .(y, z)) i(c_.(x, y)) -> .(i(y), i(x)) .(y, c_.(c_i(y), z)) -> z .(c_i(y), c_.(y, z)) -> z The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) i(x0) -> c_i(x0) .(x0, x1) -> c_.(x0, x1) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^3). The TRS R consists of the following rules: .(1, x) -> x .(x, 1) -> x i(1) -> 1 .(c_i(x), x) -> 1 .(x, c_i(x)) -> 1 i(c_i(x)) -> x .(c_.(x, y), z) -> .(x, .(y, z)) i(c_.(x, y)) -> .(i(y), i(x)) .(y, c_.(c_i(y), z)) -> z .(c_i(y), c_.(y, z)) -> z The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1 encode_i(x_1) -> i(encArg(x_1)) i(x0) -> c_i(x0) .(x0, x1) -> c_.(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) CpxTrsToCdtProof (UPPER BOUND(ID)) Converted Cpx (relative) TRS to CDT ---------------------------------------- (10) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) encode_.(z0, z1) -> .(encArg(z0), encArg(z1)) encode_1 -> 1 encode_i(z0) -> i(encArg(z0)) i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 Tuples: ENCARG(1) -> c ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) ENCODE_.(z0, z1) -> c3(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_1 -> c4 ENCODE_I(z0) -> c5(I(encArg(z0)), ENCARG(z0)) I(z0) -> c6 I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(z0, z1) -> c10 .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 S tuples: I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples:none Defined Rule Symbols: ._2, i_1, encArg_1, encode_._2, encode_1, encode_i_1 Defined Pair Symbols: ENCARG_1, ENCODE_._2, ENCODE_1, ENCODE_I_1, I_1, .'_2 Compound Symbols: c, c1_3, c2_2, c3_3, c4, c5_2, c6, c7, c8, c9_3, c10, c11, c12, c13, c14, c15_2, c16, c17 ---------------------------------------- (11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) Removed 4 trailing nodes: ENCODE_1 -> c4 .'(z0, z1) -> c10 I(z0) -> c6 ENCARG(1) -> c ---------------------------------------- (12) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) encode_.(z0, z1) -> .(encArg(z0), encArg(z1)) encode_1 -> 1 encode_i(z0) -> i(encArg(z0)) i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) ENCODE_.(z0, z1) -> c3(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCODE_I(z0) -> c5(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 S tuples: I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples:none Defined Rule Symbols: ._2, i_1, encArg_1, encode_._2, encode_1, encode_i_1 Defined Pair Symbols: ENCARG_1, ENCODE_._2, ENCODE_I_1, I_1, .'_2 Compound Symbols: c1_3, c2_2, c3_3, c5_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17 ---------------------------------------- (13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID)) Split RHS of tuples not part of any SCC ---------------------------------------- (14) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) encode_.(z0, z1) -> .(encArg(z0), encArg(z1)) encode_1 -> 1 encode_i(z0) -> i(encArg(z0)) i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_.(z0, z1) -> c(ENCARG(z0)) ENCODE_.(z0, z1) -> c(ENCARG(z1)) ENCODE_I(z0) -> c(I(encArg(z0))) ENCODE_I(z0) -> c(ENCARG(z0)) S tuples: I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples:none Defined Rule Symbols: ._2, i_1, encArg_1, encode_._2, encode_1, encode_i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (15) CdtLeafRemovalProof (ComplexityIfPolyImplication) Removed 3 leading nodes: ENCODE_.(z0, z1) -> c(ENCARG(z0)) ENCODE_.(z0, z1) -> c(ENCARG(z1)) ENCODE_I(z0) -> c(ENCARG(z0)) ---------------------------------------- (16) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) encode_.(z0, z1) -> .(encArg(z0), encArg(z1)) encode_1 -> 1 encode_i(z0) -> i(encArg(z0)) i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples: I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples:none Defined Rule Symbols: ._2, i_1, encArg_1, encode_._2, encode_1, encode_i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (17) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) The following rules are not usable and were removed: encode_.(z0, z1) -> .(encArg(z0), encArg(z1)) encode_1 -> 1 encode_i(z0) -> i(encArg(z0)) ---------------------------------------- (18) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples: I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples:none Defined Rule Symbols: encArg_1, ._2, i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) We considered the (Usable) Rules: encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(1, z0) -> z0 .(z0, 1) -> z0 encArg(cons_i(z0)) -> i(encArg(z0)) i(c_i(z0)) -> z0 .(c_i(z0), c_.(z0, z1)) -> z1 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) encArg(1) -> 1 .(z0, c_.(c_i(z0), z1)) -> z1 i(1) -> 1 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [2] + x_1 + x_2 POL(.'(x_1, x_2)) = 0 POL(1) = 0 POL(ENCARG(x_1)) = x_1^2 POL(ENCODE_.(x_1, x_2)) = [2] + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_I(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(I(x_1)) = [2]x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c12) = 0 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16) = 0 POL(c17) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c_.(x_1, x_2)) = [2] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_.(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_i(x_1)) = [2] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (20) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples: I(1) -> c7 I(c_i(z0)) -> c8 .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples: I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) Defined Rule Symbols: encArg_1, ._2, i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. I(1) -> c7 I(c_i(z0)) -> c8 We considered the (Usable) Rules: encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(1, z0) -> z0 .(z0, 1) -> z0 encArg(cons_i(z0)) -> i(encArg(z0)) i(c_i(z0)) -> z0 .(c_i(z0), c_.(z0, z1)) -> z1 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) encArg(1) -> 1 .(z0, c_.(c_i(z0), z1)) -> z1 i(1) -> 1 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [2] + x_1 + x_2 POL(.'(x_1, x_2)) = 0 POL(1) = 0 POL(ENCARG(x_1)) = [2]x_1 + [2]x_1^2 POL(ENCODE_.(x_1, x_2)) = [1] + x_1 + [2]x_2 + [2]x_2^2 + [2]x_1*x_2 + [2]x_1^2 POL(ENCODE_I(x_1)) = [2] + [2]x_1 + [2]x_1^2 POL(I(x_1)) = [2] + [2]x_1 POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c12) = 0 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16) = 0 POL(c17) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c_.(x_1, x_2)) = [2] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_.(x_1, x_2)) = [2] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (22) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples: .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples: I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) I(1) -> c7 I(c_i(z0)) -> c8 Defined Rule Symbols: encArg_1, ._2, i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. .'(1, z0) -> c11 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) We considered the (Usable) Rules: encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(1, z0) -> z0 .(z0, 1) -> z0 encArg(cons_i(z0)) -> i(encArg(z0)) i(c_i(z0)) -> z0 .(c_i(z0), c_.(z0, z1)) -> z1 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) encArg(1) -> 1 .(z0, c_.(c_i(z0), z1)) -> z1 i(1) -> 1 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [1] + x_1 + x_2 POL(.'(x_1, x_2)) = x_1 POL(1) = [1] POL(ENCARG(x_1)) = x_1 + x_1^3 POL(ENCODE_.(x_1, x_2)) = x_1 POL(ENCODE_I(x_1)) = x_1^2 POL(I(x_1)) = x_1^2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c12) = 0 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16) = 0 POL(c17) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c_.(x_1, x_2)) = [1] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_.(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (24) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples: .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 K tuples: I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) I(1) -> c7 I(c_i(z0)) -> c8 .'(1, z0) -> c11 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) Defined Rule Symbols: encArg_1, ._2, i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^3))) Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 We considered the (Usable) Rules: encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(1, z0) -> z0 .(z0, 1) -> z0 encArg(cons_i(z0)) -> i(encArg(z0)) i(c_i(z0)) -> z0 .(c_i(z0), c_.(z0, z1)) -> z1 i(c_.(z0, z1)) -> .(i(z1), i(z0)) .(z0, z1) -> c_.(z0, z1) encArg(1) -> 1 .(z0, c_.(c_i(z0), z1)) -> z1 i(1) -> 1 i(z0) -> c_i(z0) And the Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) The order we found is given by the following interpretation: Polynomial interpretation : POL(.(x_1, x_2)) = [1] + x_1 + x_2 POL(.'(x_1, x_2)) = [1] + x_1 POL(1) = [1] POL(ENCARG(x_1)) = x_1^3 POL(ENCODE_.(x_1, x_2)) = [1] + x_1 POL(ENCODE_I(x_1)) = [1] + x_1 + x_1^2 POL(I(x_1)) = [1] + x_1 + x_1^2 POL(c(x_1)) = x_1 POL(c1(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c11) = 0 POL(c12) = 0 POL(c13) = 0 POL(c14) = 0 POL(c15(x_1, x_2)) = x_1 + x_2 POL(c16) = 0 POL(c17) = 0 POL(c2(x_1, x_2)) = x_1 + x_2 POL(c7) = 0 POL(c8) = 0 POL(c9(x_1, x_2, x_3)) = x_1 + x_2 + x_3 POL(c_.(x_1, x_2)) = [1] + x_1 + x_2 POL(c_i(x_1)) = x_1 POL(cons_.(x_1, x_2)) = [1] + x_1 + x_2 POL(cons_i(x_1)) = [1] + x_1 POL(encArg(x_1)) = x_1 POL(i(x_1)) = x_1 ---------------------------------------- (26) Obligation: Complexity Dependency Tuples Problem Rules: encArg(1) -> 1 encArg(cons_.(z0, z1)) -> .(encArg(z0), encArg(z1)) encArg(cons_i(z0)) -> i(encArg(z0)) .(z0, z1) -> c_.(z0, z1) .(1, z0) -> z0 .(z0, 1) -> z0 .(c_i(z0), z0) -> 1 .(z0, c_i(z0)) -> 1 .(c_.(z0, z1), z2) -> .(z0, .(z1, z2)) .(z0, c_.(c_i(z0), z1)) -> z1 .(c_i(z0), c_.(z0, z1)) -> z1 i(z0) -> c_i(z0) i(1) -> 1 i(c_i(z0)) -> z0 i(c_.(z0, z1)) -> .(i(z1), i(z0)) Tuples: ENCARG(cons_.(z0, z1)) -> c1(.'(encArg(z0), encArg(z1)), ENCARG(z0), ENCARG(z1)) ENCARG(cons_i(z0)) -> c2(I(encArg(z0)), ENCARG(z0)) I(1) -> c7 I(c_i(z0)) -> c8 I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) .'(1, z0) -> c11 .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 ENCODE_.(z0, z1) -> c(.'(encArg(z0), encArg(z1))) ENCODE_I(z0) -> c(I(encArg(z0))) S tuples:none K tuples: I(c_.(z0, z1)) -> c9(.'(i(z1), i(z0)), I(z1), I(z0)) I(1) -> c7 I(c_i(z0)) -> c8 .'(1, z0) -> c11 .'(c_.(z0, z1), z2) -> c15(.'(z0, .(z1, z2)), .'(z1, z2)) .'(z0, 1) -> c12 .'(c_i(z0), z0) -> c13 .'(z0, c_i(z0)) -> c14 .'(z0, c_.(c_i(z0), z1)) -> c16 .'(c_i(z0), c_.(z0, z1)) -> c17 Defined Rule Symbols: encArg_1, ._2, i_1 Defined Pair Symbols: ENCARG_1, I_1, .'_2, ENCODE_._2, ENCODE_I_1 Compound Symbols: c1_3, c2_2, c7, c8, c9_3, c11, c12, c13, c14, c15_2, c16, c17, c_1 ---------------------------------------- (27) SIsEmptyProof (BOTH BOUNDS(ID, ID)) The set S is empty ---------------------------------------- (28) BOUNDS(1, 1) ---------------------------------------- (29) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (30) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (31) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (32) Obligation: TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i ---------------------------------------- (33) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: ., i, encArg They will be analysed ascendingly in the following order: . < i . < encArg i < encArg ---------------------------------------- (34) Obligation: TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i Generator Equations: gen_1':cons_.:cons_i2_0(0) <=> 1' gen_1':cons_.:cons_i2_0(+(x, 1)) <=> cons_.(1', gen_1':cons_.:cons_i2_0(x)) The following defined symbols remain to be analysed: ., i, encArg They will be analysed ascendingly in the following order: . < i . < encArg i < encArg ---------------------------------------- (35) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':cons_.:cons_i2_0(n229_0)) -> gen_1':cons_.:cons_i2_0(0), rt in Omega(n229_0) Induction Base: encArg(gen_1':cons_.:cons_i2_0(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':cons_.:cons_i2_0(+(n229_0, 1))) ->_R^Omega(0) .(encArg(1'), encArg(gen_1':cons_.:cons_i2_0(n229_0))) ->_R^Omega(0) .(1', encArg(gen_1':cons_.:cons_i2_0(n229_0))) ->_IH .(1', gen_1':cons_.:cons_i2_0(0)) ->_R^Omega(1) gen_1':cons_.:cons_i2_0(0) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (36) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: .(1', x) -> x .(x, 1') -> x .(i(x), x) -> 1' .(x, i(x)) -> 1' i(1') -> 1' i(i(x)) -> x .(i(y), .(y, z)) -> z .(y, .(i(y), z)) -> z .(.(x, y), z) -> .(x, .(y, z)) i(.(x, y)) -> .(i(y), i(x)) encArg(1') -> 1' encArg(cons_.(x_1, x_2)) -> .(encArg(x_1), encArg(x_2)) encArg(cons_i(x_1)) -> i(encArg(x_1)) encode_.(x_1, x_2) -> .(encArg(x_1), encArg(x_2)) encode_1 -> 1' encode_i(x_1) -> i(encArg(x_1)) Types: . :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i 1' :: 1':cons_.:cons_i i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encArg :: 1':cons_.:cons_i -> 1':cons_.:cons_i cons_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i cons_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i encode_. :: 1':cons_.:cons_i -> 1':cons_.:cons_i -> 1':cons_.:cons_i encode_1 :: 1':cons_.:cons_i encode_i :: 1':cons_.:cons_i -> 1':cons_.:cons_i hole_1':cons_.:cons_i1_0 :: 1':cons_.:cons_i gen_1':cons_.:cons_i2_0 :: Nat -> 1':cons_.:cons_i Generator Equations: gen_1':cons_.:cons_i2_0(0) <=> 1' gen_1':cons_.:cons_i2_0(+(x, 1)) <=> cons_.(1', gen_1':cons_.:cons_i2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (37) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (38) BOUNDS(n^1, INF)