/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 182 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 556 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 56 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0) -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0, s(y)) -> cons(0, int(s(0), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0) -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0, s(y)) -> cons(0, int(s(0), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0) -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0, s(y)) -> cons(0, int(s(0), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0) -> 0 encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0 encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) The (relative) TRS S consists of the following rules: encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int nil :: nil:s:0':cons:cons_intlist:cons_int int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int 0' :: nil:s:0':cons:cons_intlist:cons_int cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encArg :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_nil :: nil:s:0':cons:cons_intlist:cons_int encode_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_0 :: nil:s:0':cons:cons_intlist:cons_int encode_cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int hole_nil:s:0':cons:cons_intlist:cons_int1_3 :: nil:s:0':cons:cons_intlist:cons_int gen_nil:s:0':cons:cons_intlist:cons_int2_3 :: Nat -> nil:s:0':cons:cons_intlist:cons_int ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: intlist, int, encArg They will be analysed ascendingly in the following order: intlist < int intlist < encArg int < encArg ---------------------------------------- (10) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int nil :: nil:s:0':cons:cons_intlist:cons_int int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int 0' :: nil:s:0':cons:cons_intlist:cons_int cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encArg :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_nil :: nil:s:0':cons:cons_intlist:cons_int encode_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_0 :: nil:s:0':cons:cons_intlist:cons_int encode_cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int hole_nil:s:0':cons:cons_intlist:cons_int1_3 :: nil:s:0':cons:cons_intlist:cons_int gen_nil:s:0':cons:cons_intlist:cons_int2_3 :: Nat -> nil:s:0':cons:cons_intlist:cons_int Generator Equations: gen_nil:s:0':cons:cons_intlist:cons_int2_3(0) <=> nil gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(x, 1)) <=> s(gen_nil:s:0':cons:cons_intlist:cons_int2_3(x)) The following defined symbols remain to be analysed: intlist, int, encArg They will be analysed ascendingly in the following order: intlist < int intlist < encArg int < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: int(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3)), gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3))) -> *3_3, rt in Omega(n16_3) Induction Base: int(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, 0)), gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, 0))) Induction Step: int(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, +(n16_3, 1))), gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, +(n16_3, 1)))) ->_R^Omega(1) intlist(int(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3)), gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3)))) ->_IH intlist(*3_3) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int nil :: nil:s:0':cons:cons_intlist:cons_int int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int 0' :: nil:s:0':cons:cons_intlist:cons_int cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encArg :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_nil :: nil:s:0':cons:cons_intlist:cons_int encode_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_0 :: nil:s:0':cons:cons_intlist:cons_int encode_cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int hole_nil:s:0':cons:cons_intlist:cons_int1_3 :: nil:s:0':cons:cons_intlist:cons_int gen_nil:s:0':cons:cons_intlist:cons_int2_3 :: Nat -> nil:s:0':cons:cons_intlist:cons_int Generator Equations: gen_nil:s:0':cons:cons_intlist:cons_int2_3(0) <=> nil gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(x, 1)) <=> s(gen_nil:s:0':cons:cons_intlist:cons_int2_3(x)) The following defined symbols remain to be analysed: int, encArg They will be analysed ascendingly in the following order: int < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: intlist(nil) -> nil int(s(x), 0') -> nil int(x, x) -> cons(x, nil) intlist(cons(x, y)) -> cons(s(x), intlist(y)) int(s(x), s(y)) -> intlist(int(x, y)) int(0', s(y)) -> cons(0', int(s(0'), s(y))) intlist(cons(x, nil)) -> cons(s(x), nil) encArg(nil) -> nil encArg(s(x_1)) -> s(encArg(x_1)) encArg(0') -> 0' encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_intlist(x_1)) -> intlist(encArg(x_1)) encArg(cons_int(x_1, x_2)) -> int(encArg(x_1), encArg(x_2)) encode_intlist(x_1) -> intlist(encArg(x_1)) encode_nil -> nil encode_int(x_1, x_2) -> int(encArg(x_1), encArg(x_2)) encode_s(x_1) -> s(encArg(x_1)) encode_0 -> 0' encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int nil :: nil:s:0':cons:cons_intlist:cons_int int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int 0' :: nil:s:0':cons:cons_intlist:cons_int cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encArg :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int cons_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_intlist :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_nil :: nil:s:0':cons:cons_intlist:cons_int encode_int :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_s :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int encode_0 :: nil:s:0':cons:cons_intlist:cons_int encode_cons :: nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int -> nil:s:0':cons:cons_intlist:cons_int hole_nil:s:0':cons:cons_intlist:cons_int1_3 :: nil:s:0':cons:cons_intlist:cons_int gen_nil:s:0':cons:cons_intlist:cons_int2_3 :: Nat -> nil:s:0':cons:cons_intlist:cons_int Lemmas: int(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3)), gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(1, n16_3))) -> *3_3, rt in Omega(n16_3) Generator Equations: gen_nil:s:0':cons:cons_intlist:cons_int2_3(0) <=> nil gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(x, 1)) <=> s(gen_nil:s:0':cons:cons_intlist:cons_int2_3(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_nil:s:0':cons:cons_intlist:cons_int2_3(n1698_3)) -> gen_nil:s:0':cons:cons_intlist:cons_int2_3(n1698_3), rt in Omega(0) Induction Base: encArg(gen_nil:s:0':cons:cons_intlist:cons_int2_3(0)) ->_R^Omega(0) nil Induction Step: encArg(gen_nil:s:0':cons:cons_intlist:cons_int2_3(+(n1698_3, 1))) ->_R^Omega(0) s(encArg(gen_nil:s:0':cons:cons_intlist:cons_int2_3(n1698_3))) ->_IH s(gen_nil:s:0':cons:cons_intlist:cons_int2_3(c1699_3)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)