/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 161 ms] (4) CpxRelTRS (5) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] (6) CpxTRS (7) CpxTrsMatchBoundsTAProof [FINISHED, 87 ms] (8) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(f(f(a, a), y), h(a)), x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_h(x_1) -> h(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(f(f(a, a), y), h(a)), x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(f(f(a, a), y), h(a)), x) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_h(x_1) -> h(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToTrsProof (UPPER BOUND(ID)) transformed relative TRS to TRS ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(x, f(y, a)) -> f(f(f(f(a, a), y), h(a)), x) encArg(a) -> a encArg(h(x_1)) -> h(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_h(x_1) -> h(encArg(x_1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (7) CpxTrsMatchBoundsTAProof (FINISHED) A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: final states : [1, 2, 3, 4, 5] transitions: a0() -> 0 h0(0) -> 0 cons_f0(0, 0) -> 0 f0(0, 0) -> 1 encArg0(0) -> 2 encode_f0(0, 0) -> 3 encode_a0() -> 4 encode_h0(0) -> 5 a1() -> 2 encArg1(0) -> 6 h1(6) -> 2 encArg1(0) -> 7 encArg1(0) -> 8 f1(7, 8) -> 2 f1(7, 8) -> 3 a1() -> 4 h1(6) -> 5 a1() -> 6 a1() -> 7 a1() -> 8 h1(6) -> 6 h1(6) -> 7 h1(6) -> 8 f1(7, 8) -> 6 f1(7, 8) -> 7 f1(7, 8) -> 8 a2() -> 12 a2() -> 13 f2(12, 13) -> 11 f2(11, 7) -> 10 a2() -> 15 h2(15) -> 14 f2(10, 14) -> 9 f2(9, 7) -> 2 f2(9, 7) -> 3 f2(9, 7) -> 6 f2(9, 7) -> 7 f2(9, 7) -> 8 f2(11, 9) -> 10 f2(9, 9) -> 2 f2(9, 9) -> 3 f2(9, 9) -> 6 f2(9, 9) -> 7 f2(9, 9) -> 8 f2(9, 11) -> 10 a3() -> 19 a3() -> 20 f3(19, 20) -> 18 f3(18, 12) -> 17 a3() -> 22 h3(22) -> 21 f3(17, 21) -> 16 f3(16, 9) -> 10 ---------------------------------------- (8) BOUNDS(1, n^1)