/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 178 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 555 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 4 ms] (18) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(f(x, y)) -> f(f(a, h(h(y))), x) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(f(x, y)) -> f(f(a, h(h(y))), x) The (relative) TRS S consists of the following rules: encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(f(x, y)) -> f(f(a, h(h(y))), x) The (relative) TRS S consists of the following rules: encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: h(f(x, y)) -> f(f(a, h(h(y))), x) The (relative) TRS S consists of the following rules: encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: h(f(x, y)) -> f(f(a, h(h(y))), x) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Types: h :: f:a:cons_h -> f:a:cons_h f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h a :: f:a:cons_h encArg :: f:a:cons_h -> f:a:cons_h cons_h :: f:a:cons_h -> f:a:cons_h encode_h :: f:a:cons_h -> f:a:cons_h encode_f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h encode_a :: f:a:cons_h hole_f:a:cons_h1_0 :: f:a:cons_h gen_f:a:cons_h2_0 :: Nat -> f:a:cons_h ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: h, encArg They will be analysed ascendingly in the following order: h < encArg ---------------------------------------- (10) Obligation: TRS: Rules: h(f(x, y)) -> f(f(a, h(h(y))), x) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Types: h :: f:a:cons_h -> f:a:cons_h f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h a :: f:a:cons_h encArg :: f:a:cons_h -> f:a:cons_h cons_h :: f:a:cons_h -> f:a:cons_h encode_h :: f:a:cons_h -> f:a:cons_h encode_f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h encode_a :: f:a:cons_h hole_f:a:cons_h1_0 :: f:a:cons_h gen_f:a:cons_h2_0 :: Nat -> f:a:cons_h Generator Equations: gen_f:a:cons_h2_0(0) <=> a gen_f:a:cons_h2_0(+(x, 1)) <=> f(a, gen_f:a:cons_h2_0(x)) The following defined symbols remain to be analysed: h, encArg They will be analysed ascendingly in the following order: h < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: h(gen_f:a:cons_h2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Induction Base: h(gen_f:a:cons_h2_0(+(1, 0))) Induction Step: h(gen_f:a:cons_h2_0(+(1, +(n4_0, 1)))) ->_R^Omega(1) f(f(a, h(h(gen_f:a:cons_h2_0(+(1, n4_0))))), a) ->_IH f(f(a, h(*3_0)), a) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: h(f(x, y)) -> f(f(a, h(h(y))), x) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Types: h :: f:a:cons_h -> f:a:cons_h f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h a :: f:a:cons_h encArg :: f:a:cons_h -> f:a:cons_h cons_h :: f:a:cons_h -> f:a:cons_h encode_h :: f:a:cons_h -> f:a:cons_h encode_f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h encode_a :: f:a:cons_h hole_f:a:cons_h1_0 :: f:a:cons_h gen_f:a:cons_h2_0 :: Nat -> f:a:cons_h Generator Equations: gen_f:a:cons_h2_0(0) <=> a gen_f:a:cons_h2_0(+(x, 1)) <=> f(a, gen_f:a:cons_h2_0(x)) The following defined symbols remain to be analysed: h, encArg They will be analysed ascendingly in the following order: h < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: h(f(x, y)) -> f(f(a, h(h(y))), x) encArg(f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(a) -> a encArg(cons_h(x_1)) -> h(encArg(x_1)) encode_h(x_1) -> h(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a Types: h :: f:a:cons_h -> f:a:cons_h f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h a :: f:a:cons_h encArg :: f:a:cons_h -> f:a:cons_h cons_h :: f:a:cons_h -> f:a:cons_h encode_h :: f:a:cons_h -> f:a:cons_h encode_f :: f:a:cons_h -> f:a:cons_h -> f:a:cons_h encode_a :: f:a:cons_h hole_f:a:cons_h1_0 :: f:a:cons_h gen_f:a:cons_h2_0 :: Nat -> f:a:cons_h Lemmas: h(gen_f:a:cons_h2_0(+(1, n4_0))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_f:a:cons_h2_0(0) <=> a gen_f:a:cons_h2_0(+(x, 1)) <=> f(a, gen_f:a:cons_h2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_f:a:cons_h2_0(n233_0)) -> gen_f:a:cons_h2_0(n233_0), rt in Omega(0) Induction Base: encArg(gen_f:a:cons_h2_0(0)) ->_R^Omega(0) a Induction Step: encArg(gen_f:a:cons_h2_0(+(n233_0, 1))) ->_R^Omega(0) f(encArg(a), encArg(gen_f:a:cons_h2_0(n233_0))) ->_R^Omega(0) f(a, encArg(gen_f:a:cons_h2_0(n233_0))) ->_IH f(a, gen_f:a:cons_h2_0(c234_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (18) BOUNDS(1, INF)