/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 83 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 518 ms] (12) BEST (13) proven lower bound (14) LowerBoundPropagationProof [FINISHED, 0 ms] (15) BOUNDS(n^1, INF) (16) typed CpxTrs (17) RewriteLemmaProof [LOWER BOUND(ID), 155 ms] (18) typed CpxTrs (19) RewriteLemmaProof [LOWER BOUND(ID), 145 ms] (20) typed CpxTrs (21) RewriteLemmaProof [LOWER BOUND(ID), 47 ms] (22) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) The (relative) TRS S consists of the following rules: encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, b, encArg They will be analysed ascendingly in the following order: a = b a < encArg b < encArg ---------------------------------------- (10) Obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: b, a, encArg They will be analysed ascendingly in the following order: a = b a < encArg b < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: b(gen_c:cons_a:cons_b2_0(+(1, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Induction Base: b(gen_c:cons_a:cons_b2_0(+(1, *(2, 0)))) Induction Step: b(gen_c:cons_a:cons_b2_0(+(1, *(2, +(n4_0, 1))))) ->_R^Omega(1) a(a(gen_c:cons_a:cons_b2_0(+(2, *(2, n4_0))))) ->_R^Omega(1) a(c(c(b(b(gen_c:cons_a:cons_b2_0(+(1, *(2, n4_0)))))))) ->_IH a(c(c(b(*3_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Complex Obligation (BEST) ---------------------------------------- (13) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: b, a, encArg They will be analysed ascendingly in the following order: a = b a < encArg b < encArg ---------------------------------------- (14) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (15) BOUNDS(n^1, INF) ---------------------------------------- (16) Obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Lemmas: b(gen_c:cons_a:cons_b2_0(+(1, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a = b a < encArg b < encArg ---------------------------------------- (17) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: a(gen_c:cons_a:cons_b2_0(+(1, *(2, n295_0)))) -> *3_0, rt in Omega(n295_0) Induction Base: a(gen_c:cons_a:cons_b2_0(+(1, *(2, 0)))) Induction Step: a(gen_c:cons_a:cons_b2_0(+(1, *(2, +(n295_0, 1))))) ->_R^Omega(1) c(c(b(b(gen_c:cons_a:cons_b2_0(+(2, *(2, n295_0))))))) ->_R^Omega(1) c(c(b(a(a(gen_c:cons_a:cons_b2_0(+(1, *(2, n295_0)))))))) ->_IH c(c(b(a(*3_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (18) Obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Lemmas: b(gen_c:cons_a:cons_b2_0(+(1, *(2, n4_0)))) -> *3_0, rt in Omega(n4_0) a(gen_c:cons_a:cons_b2_0(+(1, *(2, n295_0)))) -> *3_0, rt in Omega(n295_0) Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: b, encArg They will be analysed ascendingly in the following order: a = b a < encArg b < encArg ---------------------------------------- (19) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: b(gen_c:cons_a:cons_b2_0(+(1, *(2, n806_0)))) -> *3_0, rt in Omega(n806_0) Induction Base: b(gen_c:cons_a:cons_b2_0(+(1, *(2, 0)))) Induction Step: b(gen_c:cons_a:cons_b2_0(+(1, *(2, +(n806_0, 1))))) ->_R^Omega(1) a(a(gen_c:cons_a:cons_b2_0(+(2, *(2, n806_0))))) ->_R^Omega(1) a(c(c(b(b(gen_c:cons_a:cons_b2_0(+(1, *(2, n806_0)))))))) ->_IH a(c(c(b(*3_0)))) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (20) Obligation: TRS: Rules: a(b(x1)) -> x1 a(c(x1)) -> c(c(b(b(x1)))) b(c(x1)) -> a(a(x1)) encArg(c(x_1)) -> c(encArg(x_1)) encArg(cons_a(x_1)) -> a(encArg(x_1)) encArg(cons_b(x_1)) -> b(encArg(x_1)) encode_a(x_1) -> a(encArg(x_1)) encode_b(x_1) -> b(encArg(x_1)) encode_c(x_1) -> c(encArg(x_1)) Types: a :: c:cons_a:cons_b -> c:cons_a:cons_b b :: c:cons_a:cons_b -> c:cons_a:cons_b c :: c:cons_a:cons_b -> c:cons_a:cons_b encArg :: c:cons_a:cons_b -> c:cons_a:cons_b cons_a :: c:cons_a:cons_b -> c:cons_a:cons_b cons_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_a :: c:cons_a:cons_b -> c:cons_a:cons_b encode_b :: c:cons_a:cons_b -> c:cons_a:cons_b encode_c :: c:cons_a:cons_b -> c:cons_a:cons_b hole_c:cons_a:cons_b1_0 :: c:cons_a:cons_b gen_c:cons_a:cons_b2_0 :: Nat -> c:cons_a:cons_b Lemmas: b(gen_c:cons_a:cons_b2_0(+(1, *(2, n806_0)))) -> *3_0, rt in Omega(n806_0) a(gen_c:cons_a:cons_b2_0(+(1, *(2, n295_0)))) -> *3_0, rt in Omega(n295_0) Generator Equations: gen_c:cons_a:cons_b2_0(0) <=> hole_c:cons_a:cons_b1_0 gen_c:cons_a:cons_b2_0(+(x, 1)) <=> c(gen_c:cons_a:cons_b2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (21) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_c:cons_a:cons_b2_0(+(1, n1316_0))) -> *3_0, rt in Omega(0) Induction Base: encArg(gen_c:cons_a:cons_b2_0(+(1, 0))) Induction Step: encArg(gen_c:cons_a:cons_b2_0(+(1, +(n1316_0, 1)))) ->_R^Omega(0) c(encArg(gen_c:cons_a:cons_b2_0(+(1, n1316_0)))) ->_IH c(*3_0) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (22) BOUNDS(1, INF)