/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(?, O(n^1)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 172 ms] (4) CpxRelTRS (5) NonCtorToCtorProof [UPPER BOUND(ID), 0 ms] (6) CpxRelTRS (7) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxRelTRS (9) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxWeightedTrs (11) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (12) CpxTypedWeightedTrs (13) CompletionProof [UPPER BOUND(ID), 0 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) CompleteCoflocoProof [FINISHED, 443 ms] (18) BOUNDS(1, n^1) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, f(a, f(b, f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) f(a, f(c, f(x, y))) -> f(b, f(x, y)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, f(a, f(b, f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) f(a, f(c, f(x, y))) -> f(b, f(x, y)) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, f(a, f(b, f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) f(a, f(c, f(x, y))) -> f(b, f(x, y)) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c Rewrite Strategy: FULL ---------------------------------------- (5) NonCtorToCtorProof (UPPER BOUND(ID)) transformed non-ctor to ctor-system ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, c_f(c, c_f(x, y))) -> f(b, f(x, y)) f(a, c_f(a, c_f(b, c_f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c f(x0, x1) -> c_f(x0, x1) Rewrite Strategy: FULL ---------------------------------------- (7) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, c_f(c, c_f(x, y))) -> f(b, f(x, y)) f(a, c_f(a, c_f(b, c_f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) The (relative) TRS S consists of the following rules: encArg(a) -> a encArg(b) -> b encArg(c) -> c encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_a -> a encode_b -> b encode_c -> c f(x0, x1) -> c_f(x0, x1) Rewrite Strategy: INNERMOST ---------------------------------------- (9) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (10) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). The TRS R consists of the following rules: f(a, c_f(c, c_f(x, y))) -> f(b, f(x, y)) [1] f(a, c_f(a, c_f(b, c_f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] f(x0, x1) -> c_f(x0, x1) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (11) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, c_f(c, c_f(x, y))) -> f(b, f(x, y)) [1] f(a, c_f(a, c_f(b, c_f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] f(x0, x1) -> c_f(x0, x1) [0] The TRS has the following type information: f :: a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f a :: a:c:c_f:b:cons_f c_f :: a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f c :: a:c:c_f:b:cons_f b :: a:c:c_f:b:cons_f encArg :: a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f cons_f :: a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f encode_f :: a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f -> a:c:c_f:b:cons_f encode_a :: a:c:c_f:b:cons_f encode_b :: a:c:c_f:b:cons_f encode_c :: a:c:c_f:b:cons_f Rewrite Strategy: INNERMOST ---------------------------------------- (13) CompletionProof (UPPER BOUND(ID)) The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1) -> null_f [0] And the following fresh constants: null_encArg, null_encode_f, null_encode_a, null_encode_b, null_encode_c, null_f ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, c_f(c, c_f(x, y))) -> f(b, f(x, y)) [1] f(a, c_f(a, c_f(b, c_f(x, y)))) -> f(b, f(c, f(b, f(a, f(a, f(a, f(x, y))))))) [1] encArg(a) -> a [0] encArg(b) -> b [0] encArg(c) -> c [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_a -> a [0] encode_b -> b [0] encode_c -> c [0] f(x0, x1) -> c_f(x0, x1) [0] encArg(v0) -> null_encArg [0] encode_f(v0, v1) -> null_encode_f [0] encode_a -> null_encode_a [0] encode_b -> null_encode_b [0] encode_c -> null_encode_c [0] f(v0, v1) -> null_f [0] The TRS has the following type information: f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f a :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c_f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f c :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f b :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encArg :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f cons_f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f -> a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_a :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_b :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f encode_c :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encArg :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_a :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_b :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_encode_c :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f null_f :: a:c:c_f:b:cons_f:null_encArg:null_encode_f:null_encode_a:null_encode_b:null_encode_c:null_f Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: a => 0 c => 2 b => 1 null_encArg => 0 null_encode_f => 0 null_encode_a => 0 null_encode_b => 0 null_encode_c => 0 null_f => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 2 :|: z = 2 encArg(z) -{ 0 }-> 1 :|: z = 1 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encode_a -{ 0 }-> 0 :|: encode_b -{ 0 }-> 1 :|: encode_b -{ 0 }-> 0 :|: encode_c -{ 0 }-> 2 :|: encode_c -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 1 }-> f(1, f(x, y)) :|: x >= 0, y >= 0, z' = 1 + 2 + (1 + x + y), z = 0 f(z, z') -{ 1 }-> f(1, f(2, f(1, f(0, f(0, f(0, f(x, y))))))) :|: z' = 1 + 0 + (1 + 1 + (1 + x + y)), x >= 0, y >= 0, z = 0 f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 0 }-> 1 + x0 + x1 :|: z = x0, x0 >= 0, x1 >= 0, z' = x1 Only complete derivations are relevant for the runtime complexity. ---------------------------------------- (17) CompleteCoflocoProof (FINISHED) Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: eq(start(V1, V),0,[f(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[encArg(V1, Out)],[V1 >= 0]). eq(start(V1, V),0,[fun(V1, V, Out)],[V1 >= 0,V >= 0]). eq(start(V1, V),0,[fun1(Out)],[]). eq(start(V1, V),0,[fun2(Out)],[]). eq(start(V1, V),0,[fun3(Out)],[]). eq(f(V1, V, Out),1,[f(V2, V3, Ret1),f(1, Ret1, Ret)],[Out = Ret,V2 >= 0,V3 >= 0,V = 4 + V2 + V3,V1 = 0]). eq(f(V1, V, Out),1,[f(V4, V5, Ret111111),f(0, Ret111111, Ret11111),f(0, Ret11111, Ret1111),f(0, Ret1111, Ret111),f(1, Ret111, Ret11),f(2, Ret11, Ret12),f(1, Ret12, Ret2)],[Out = Ret2,V = 4 + V4 + V5,V4 >= 0,V5 >= 0,V1 = 0]). eq(encArg(V1, Out),0,[],[Out = 0,V1 = 0]). eq(encArg(V1, Out),0,[],[Out = 1,V1 = 1]). eq(encArg(V1, Out),0,[],[Out = 2,V1 = 2]). eq(encArg(V1, Out),0,[encArg(V7, Ret0),encArg(V6, Ret13),f(Ret0, Ret13, Ret3)],[Out = Ret3,V7 >= 0,V1 = 1 + V6 + V7,V6 >= 0]). eq(fun(V1, V, Out),0,[encArg(V8, Ret01),encArg(V9, Ret14),f(Ret01, Ret14, Ret4)],[Out = Ret4,V8 >= 0,V9 >= 0,V1 = V8,V = V9]). eq(fun1(Out),0,[],[Out = 0]). eq(fun2(Out),0,[],[Out = 1]). eq(fun3(Out),0,[],[Out = 2]). eq(f(V1, V, Out),0,[],[Out = 1 + V10 + V11,V1 = V11,V11 >= 0,V10 >= 0,V = V10]). eq(encArg(V1, Out),0,[],[Out = 0,V12 >= 0,V1 = V12]). eq(fun(V1, V, Out),0,[],[Out = 0,V14 >= 0,V13 >= 0,V1 = V14,V = V13]). eq(fun2(Out),0,[],[Out = 0]). eq(fun3(Out),0,[],[Out = 0]). eq(f(V1, V, Out),0,[],[Out = 0,V16 >= 0,V15 >= 0,V1 = V16,V = V15]). input_output_vars(f(V1,V,Out),[V1,V],[Out]). input_output_vars(encArg(V1,Out),[V1],[Out]). input_output_vars(fun(V1,V,Out),[V1,V],[Out]). input_output_vars(fun1(Out),[],[Out]). input_output_vars(fun2(Out),[],[Out]). input_output_vars(fun3(Out),[],[Out]). CoFloCo proof output: Preprocessing Cost Relations ===================================== #### Computed strongly connected components 0. recursive [multiple] : [f/3] 1. recursive [non_tail,multiple] : [encArg/2] 2. non_recursive : [fun/3] 3. non_recursive : [fun1/1] 4. non_recursive : [fun2/1] 5. non_recursive : [fun3/1] 6. non_recursive : [start/2] #### Obtained direct recursion through partial evaluation 0. SCC is partially evaluated into f/3 1. SCC is partially evaluated into encArg/2 2. SCC is partially evaluated into fun/3 3. SCC is completely evaluated into other SCCs 4. SCC is partially evaluated into fun2/1 5. SCC is partially evaluated into fun3/1 6. SCC is partially evaluated into start/2 Control-Flow Refinement of Cost Relations ===================================== ### Specialization of cost equations f/3 * CE 9 is refined into CE [21] * CE 10 is refined into CE [22] * CE 8 is refined into CE [23] * CE 7 is refined into CE [24] ### Cost equations --> "Loop" of f/3 * CEs [24] --> Loop 15 * CEs [23] --> Loop 16 * CEs [21] --> Loop 17 * CEs [22] --> Loop 18 ### Ranking functions of CR f(V1,V,Out) #### Partial ranking functions of CR f(V1,V,Out) * Partial RF of phase [15,16]: - RF of loop [15:1,16:1]: V-3 depends on loops [15:2,16:2,16:3,16:4,16:5,16:6,16:7] V1+V-3 depends on loops [15:2,16:2,16:3,16:4,16:5,16:6,16:7] - RF of loop [15:2,16:5,16:6,16:7]: -V1+1 ### Specialization of cost equations encArg/2 * CE 11 is refined into CE [25] * CE 13 is refined into CE [26] * CE 12 is refined into CE [27] * CE 14 is refined into CE [28,29,30] ### Cost equations --> "Loop" of encArg/2 * CEs [30] --> Loop 19 * CEs [29] --> Loop 20 * CEs [28] --> Loop 21 * CEs [25] --> Loop 22 * CEs [26] --> Loop 23 * CEs [27] --> Loop 24 ### Ranking functions of CR encArg(V1,Out) * RF of phase [19,20,21]: [V1] #### Partial ranking functions of CR encArg(V1,Out) * Partial RF of phase [19,20,21]: - RF of loop [19:1,19:2,20:1,20:2,21:1,21:2]: V1 ### Specialization of cost equations fun/3 * CE 15 is refined into CE [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] * CE 16 is refined into CE [51] ### Cost equations --> "Loop" of fun/3 * CEs [50] --> Loop 25 * CEs [35] --> Loop 26 * CEs [48] --> Loop 27 * CEs [34,47] --> Loop 28 * CEs [37,43] --> Loop 29 * CEs [32,39,41,45] --> Loop 30 * CEs [31,36,38,40,42,44,49,51] --> Loop 31 * CEs [33,46] --> Loop 32 ### Ranking functions of CR fun(V1,V,Out) #### Partial ranking functions of CR fun(V1,V,Out) ### Specialization of cost equations fun2/1 * CE 17 is refined into CE [52] * CE 18 is refined into CE [53] ### Cost equations --> "Loop" of fun2/1 * CEs [52] --> Loop 33 * CEs [53] --> Loop 34 ### Ranking functions of CR fun2(Out) #### Partial ranking functions of CR fun2(Out) ### Specialization of cost equations fun3/1 * CE 19 is refined into CE [54] * CE 20 is refined into CE [55] ### Cost equations --> "Loop" of fun3/1 * CEs [54] --> Loop 35 * CEs [55] --> Loop 36 ### Ranking functions of CR fun3(Out) #### Partial ranking functions of CR fun3(Out) ### Specialization of cost equations start/2 * CE 1 is refined into CE [56,57,58] * CE 2 is refined into CE [59,60,61] * CE 3 is refined into CE [62,63,64,65,66] * CE 4 is refined into CE [67] * CE 5 is refined into CE [68,69] * CE 6 is refined into CE [70,71] ### Cost equations --> "Loop" of start/2 * CEs [56,57,59,60,61,62,63,64,65,67,68,69,70,71] --> Loop 37 * CEs [58,66] --> Loop 38 ### Ranking functions of CR start(V1,V) #### Partial ranking functions of CR start(V1,V) Computing Bounds ===================================== #### Cost of chains of f(V1,V,Out): * Chain [multiple([15,16],[[],[18],[17]])]...: 2*it(15)+0 Such that:aux(2) =< -2*V1+1 it(15) =< aux(2) with precondition: [V1=0,V>=4] * Chain [18]: 0 with precondition: [Out=0,V1>=0,V>=0] * Chain [17]: 0 with precondition: [V+V1+1=Out,V1>=0,V>=0] #### Cost of chains of encArg(V1,Out): * Chain [24]: 0 with precondition: [V1=1,Out=1] * Chain [23]: 0 with precondition: [V1=2,Out=2] * Chain [22]: 0 with precondition: [Out=0,V1>=0] * Chain [multiple([19,20,21],[[24],[23],[22]])]: 2*s(5)+0 Such that:aux(4) =< V1 s(5) =< aux(4) with precondition: [V1>=1] #### Cost of chains of fun(V1,V,Out): * Chain [32]...: 2*s(10)+4*s(12)+4*s(14)+0 Such that:s(9) =< V1 aux(6) =< 1 aux(7) =< V s(14) =< aux(6) s(12) =< aux(7) s(10) =< s(9) with precondition: [V1>=0,V>=1] * Chain [31]: 4*s(20)+6*s(22)+0 Such that:aux(8) =< V1 aux(9) =< V s(22) =< aux(9) s(20) =< aux(8) with precondition: [Out=0,V1>=0,V>=0] * Chain [30]: 2*s(30)+6*s(32)+0 Such that:s(29) =< V1 aux(10) =< V s(32) =< aux(10) s(30) =< s(29) with precondition: [V1>=0,V>=1,Out>=1] * Chain [29]: 2*s(38)+0 Such that:s(37) =< V1 s(38) =< s(37) with precondition: [V1>=1,V>=0,Out>=1] * Chain [28]: 2*s(40)+0 Such that:s(39) =< V1 s(40) =< s(39) with precondition: [V=2,Out=0,V1>=0] * Chain [27]: 0 with precondition: [V=2,Out=3,V1>=0] * Chain [26]: 2*s(42)+0 Such that:s(41) =< V1 s(42) =< s(41) with precondition: [V=2,V1>=1,Out>=3] * Chain [25]: 0 with precondition: [Out=1,V1>=0,V>=0] #### Cost of chains of fun2(Out): * Chain [34]: 0 with precondition: [Out=0] * Chain [33]: 0 with precondition: [Out=1] #### Cost of chains of fun3(Out): * Chain [36]: 0 with precondition: [Out=0] * Chain [35]: 0 with precondition: [Out=2] #### Cost of chains of start(V1,V): * Chain [38]...: 6*s(58)+4*s(63)+2*s(64)+0 Such that:s(59) =< V1 s(61) =< V aux(13) =< 1 s(58) =< aux(13) s(63) =< s(61) s(64) =< s(59) with precondition: [V1>=0,V>=1] * Chain [37]: 14*s(66)+12*s(70)+0 Such that:aux(14) =< V1 aux(15) =< V s(66) =< aux(14) s(70) =< aux(15) with precondition: [] Closed-form bounds of start(V1,V): ------------------------------------- * Chain [38]... with precondition: [V1>=0,V>=1] - Upper bound: 2*V1+4*V+6 - Complexity: n * Chain [37] with precondition: [] - Upper bound: nat(V)*12+nat(V1)*14 - Complexity: n ### Maximum cost of start(V1,V): nat(V)*4+nat(V1)*2+max([6,nat(V)*8+nat(V1)*12]) Asymptotic class: n * Total analysis performed in 367 ms. ---------------------------------------- (18) BOUNDS(1, n^1)