/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 223 ms] (4) CpxRelTRS (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] (6) TRS for Loop Detection (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] (8) BEST (9) proven lower bound (10) LowerBoundPropagationProof [FINISHED, 0 ms] (11) BOUNDS(n^1, INF) (12) TRS for Loop Detection ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) Transformed a relative TRS into a decreasing-loop problem. ---------------------------------------- (6) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (7) DecreasingLoopProof (LOWER BOUND(ID)) The following loop(s) give(s) rise to the lower bound Omega(n^1): The rewrite sequence g(h, s(s(x))) ->^+ s(g(h, x)) gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. The pumping substitution is [x / s(s(x))]. The result substitution is [ ]. ---------------------------------------- (8) Complex Obligation (BEST) ---------------------------------------- (9) Obligation: Proved the lower bound n^1 for the following obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) Rewrite Strategy: FULL ---------------------------------------- (10) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (11) BOUNDS(n^1, INF) ---------------------------------------- (12) Obligation: Analyzing the following TRS for decreasing loops: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: g(x, 0) -> 0 g(d, s(x)) -> s(s(g(d, x))) g(h, s(0)) -> 0 g(h, s(s(x))) -> s(g(h, x)) double(x) -> g(d, x) half(x) -> g(h, x) f(s(x), y) -> f(half(s(x)), double(y)) f(s(0), y) -> y id(x) -> f(x, s(0)) The (relative) TRS S consists of the following rules: encArg(0) -> 0 encArg(d) -> d encArg(s(x_1)) -> s(encArg(x_1)) encArg(h) -> h encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encArg(cons_double(x_1)) -> double(encArg(x_1)) encArg(cons_half(x_1)) -> half(encArg(x_1)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_id(x_1)) -> id(encArg(x_1)) encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_0 -> 0 encode_d -> d encode_s(x_1) -> s(encArg(x_1)) encode_h -> h encode_double(x_1) -> double(encArg(x_1)) encode_half(x_1) -> half(encArg(x_1)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_id(x_1) -> id(encArg(x_1)) Rewrite Strategy: FULL