/export/starexec/sandbox2/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox2/benchmark/theBenchmark.xml /export/starexec/sandbox2/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), O(n^2)) proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 191 ms] (4) CpxRelTRS (5) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] (8) CpxWeightedTrs (9) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (10) CpxTypedWeightedTrs (11) CompletionProof [UPPER BOUND(ID), 0 ms] (12) CpxTypedWeightedCompleteTrs (13) NarrowingProof [BOTH BOUNDS(ID, ID), 17 ms] (14) CpxTypedWeightedCompleteTrs (15) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 0 ms] (16) CpxRNTS (17) SimplificationProof [BOTH BOUNDS(ID, ID), 2 ms] (18) CpxRNTS (19) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] (20) CpxRNTS (21) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (22) CpxRNTS (23) IntTrsBoundProof [UPPER BOUND(ID), 354 ms] (24) CpxRNTS (25) IntTrsBoundProof [UPPER BOUND(ID), 148 ms] (26) CpxRNTS (27) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (28) CpxRNTS (29) IntTrsBoundProof [UPPER BOUND(ID), 8 ms] (30) CpxRNTS (31) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (32) CpxRNTS (33) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (34) CpxRNTS (35) IntTrsBoundProof [UPPER BOUND(ID), 292 ms] (36) CpxRNTS (37) IntTrsBoundProof [UPPER BOUND(ID), 106 ms] (38) CpxRNTS (39) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (40) CpxRNTS (41) IntTrsBoundProof [UPPER BOUND(ID), 332 ms] (42) CpxRNTS (43) IntTrsBoundProof [UPPER BOUND(ID), 275 ms] (44) CpxRNTS (45) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (46) CpxRNTS (47) IntTrsBoundProof [UPPER BOUND(ID), 220 ms] (48) CpxRNTS (49) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (50) CpxRNTS (51) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (52) CpxRNTS (53) IntTrsBoundProof [UPPER BOUND(ID), 168 ms] (54) CpxRNTS (55) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (56) CpxRNTS (57) ResultPropagationProof [UPPER BOUND(ID), 0 ms] (58) CpxRNTS (59) IntTrsBoundProof [UPPER BOUND(ID), 169 ms] (60) CpxRNTS (61) IntTrsBoundProof [UPPER BOUND(ID), 0 ms] (62) CpxRNTS (63) FinalProof [FINISHED, 0 ms] (64) BOUNDS(1, n^2) (65) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (66) CpxRelTRS (67) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (68) typed CpxTrs (69) OrderProof [LOWER BOUND(ID), 0 ms] (70) typed CpxTrs (71) RewriteLemmaProof [LOWER BOUND(ID), 291 ms] (72) BEST (73) proven lower bound (74) LowerBoundPropagationProof [FINISHED, 0 ms] (75) BOUNDS(n^1, INF) (76) typed CpxTrs (77) RewriteLemmaProof [LOWER BOUND(ID), 29 ms] (78) typed CpxTrs (79) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] (80) BOUNDS(1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) The (relative) TRS S consists of the following rules: encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, n^2). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) The (relative) TRS S consists of the following rules: encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (5) RcToIrcProof (BOTH BOUNDS(ID, ID)) Converted rc-obligation to irc-obligation. As the TRS is a non-duplicating overlay system, we have rc = irc. ---------------------------------------- (6) Obligation: The Runtime Complexity (innermost) of the given CpxRelTRS could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) The (relative) TRS S consists of the following rules: encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: INNERMOST ---------------------------------------- (7) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) Transformed relative TRS to weighted TRS ---------------------------------------- (8) Obligation: The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) [1] f(a, cons(x, k)) -> f(cons(x, a), k) [1] g(empty, d) -> d [1] g(cons(x, k), d) -> g(k, cons(x, d)) [1] encArg(empty) -> empty [0] encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_empty -> empty [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) [0] Rewrite Strategy: INNERMOST ---------------------------------------- (9) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (10) Obligation: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, empty) -> g(a, empty) [1] f(a, cons(x, k)) -> f(cons(x, a), k) [1] g(empty, d) -> d [1] g(cons(x, k), d) -> g(k, cons(x, d)) [1] encArg(empty) -> empty [0] encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_empty -> empty [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) [0] The TRS has the following type information: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (11) CompletionProof (UPPER BOUND(ID)) The transformation into a RNTS is sound, since: (a) The obligation is a constructor system where every type has a constant constructor, (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: none (c) The following functions are completely defined: g_2 f_2 encArg_1 encode_f_2 encode_empty encode_g_2 encode_cons_2 Due to the following rules being added: encArg(v0) -> empty [0] encode_f(v0, v1) -> empty [0] encode_empty -> empty [0] encode_g(v0, v1) -> empty [0] encode_cons(v0, v1) -> empty [0] g(v0, v1) -> empty [0] f(v0, v1) -> empty [0] And the following fresh constants: none ---------------------------------------- (12) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, empty) -> g(a, empty) [1] f(a, cons(x, k)) -> f(cons(x, a), k) [1] g(empty, d) -> d [1] g(cons(x, k), d) -> g(k, cons(x, d)) [1] encArg(empty) -> empty [0] encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_empty -> empty [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> empty [0] encode_f(v0, v1) -> empty [0] encode_empty -> empty [0] encode_g(v0, v1) -> empty [0] encode_cons(v0, v1) -> empty [0] g(v0, v1) -> empty [0] f(v0, v1) -> empty [0] The TRS has the following type information: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (13) NarrowingProof (BOTH BOUNDS(ID, ID)) Narrowed the inner basic terms of all right-hand sides by a single narrowing step. ---------------------------------------- (14) Obligation: Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules: f(a, empty) -> g(a, empty) [1] f(a, cons(x, k)) -> f(cons(x, a), k) [1] g(empty, d) -> d [1] g(cons(x, k), d) -> g(k, cons(x, d)) [1] encArg(empty) -> empty [0] encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) [0] encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) [0] encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) [0] encode_empty -> empty [0] encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) [0] encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) [0] encArg(v0) -> empty [0] encode_f(v0, v1) -> empty [0] encode_empty -> empty [0] encode_g(v0, v1) -> empty [0] encode_cons(v0, v1) -> empty [0] g(v0, v1) -> empty [0] f(v0, v1) -> empty [0] The TRS has the following type information: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g Rewrite Strategy: INNERMOST ---------------------------------------- (15) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. The constant constructors are abstracted as follows: empty => 0 ---------------------------------------- (16) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_cons(z, z') -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 encode_g(z, z') -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, x_2 >= 0, z = x_1, z' = x_2 encode_g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 f(z, z') -{ 1 }-> g(a, 0) :|: z = a, a >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + a, k) :|: z = a, a >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 g(z, z') -{ 1 }-> d :|: z' = d, d >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + d) :|: z' = d, x >= 0, d >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 ---------------------------------------- (17) SimplificationProof (BOTH BOUNDS(ID, ID)) Simplified the RNTS by moving equalities from the constraints into the right-hand sides. ---------------------------------------- (18) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> g(z, 0) :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 ---------------------------------------- (19) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) Found the following analysis order by SCC decomposition: { g } { encode_empty } { f } { encArg } { encode_cons } { encode_f } { encode_g } ---------------------------------------- (20) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> g(z, 0) :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} ---------------------------------------- (21) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (22) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> g(z, 0) :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} ---------------------------------------- (23) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (24) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> g(z, 0) :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {g}, {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (25) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z ---------------------------------------- (26) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 1 }-> g(z, 0) :|: z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 1 }-> g(k, 1 + x + z') :|: x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (27) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (28) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] ---------------------------------------- (29) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_empty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (30) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_empty}, {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: ?, size: O(1) [0] ---------------------------------------- (31) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encode_empty after applying outer abstraction to obtain an ITS, resulting in: O(1) with polynomial bound: 0 ---------------------------------------- (32) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (33) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (34) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] ---------------------------------------- (35) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (36) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {f}, {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (37) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 2 + z + 2*z' ---------------------------------------- (38) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 1 }-> f(1 + x + z, k) :|: z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] ---------------------------------------- (39) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (40) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] ---------------------------------------- (41) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z ---------------------------------------- (42) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encArg}, {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: ?, size: O(n^1) [z] ---------------------------------------- (43) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using CoFloCo for: encArg after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z^2 ---------------------------------------- (44) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 0 }-> g(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> f(encArg(x_1), encArg(x_2)) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 0 }-> 1 + encArg(x_1) + encArg(x_2) :|: x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 0 }-> 1 + encArg(z) + encArg(z') :|: z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 0 }-> f(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> g(encArg(z), encArg(z')) :|: z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] ---------------------------------------- (45) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (46) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] ---------------------------------------- (47) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_cons after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: 1 + z + z' ---------------------------------------- (48) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_cons}, {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: ?, size: O(n^1) [1 + z + z'] ---------------------------------------- (49) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_cons after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2*z^2 + 2*z'^2 ---------------------------------------- (50) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] ---------------------------------------- (51) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (52) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] ---------------------------------------- (53) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (54) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_f}, {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] encode_f: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (55) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_f after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 2 + z + 2*z^2 + 2*z' + 2*z'^2 ---------------------------------------- (56) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] encode_f: runtime: O(n^2) [2 + z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [z + z'] ---------------------------------------- (57) ResultPropagationProof (UPPER BOUND(ID)) Applied inner abstraction using the recently inferred runtime/size bounds where possible. ---------------------------------------- (58) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] encode_f: runtime: O(n^2) [2 + z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [z + z'] ---------------------------------------- (59) IntTrsBoundProof (UPPER BOUND(ID)) Computed SIZE bound using CoFloCo for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^1) with polynomial bound: z + z' ---------------------------------------- (60) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: {encode_g} Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] encode_f: runtime: O(n^2) [2 + z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [z + z'] encode_g: runtime: ?, size: O(n^1) [z + z'] ---------------------------------------- (61) IntTrsBoundProof (UPPER BOUND(ID)) Computed RUNTIME bound using KoAT for: encode_g after applying outer abstraction to obtain an ITS, resulting in: O(n^2) with polynomial bound: 1 + z + 2*z^2 + 2*z'^2 ---------------------------------------- (62) Obligation: Complexity RNTS consisting of the following rules: encArg(z) -{ 2 + s3 + 2*s4 + 2*x_1^2 + 2*x_2^2 }-> s5 :|: s3 >= 0, s3 <= x_1, s4 >= 0, s4 <= x_2, s5 >= 0, s5 <= s3 + s4, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 1 + s6 + 2*x_1^2 + 2*x_2^2 }-> s8 :|: s6 >= 0, s6 <= x_1, s7 >= 0, s7 <= x_2, s8 >= 0, s8 <= s6 + s7, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encArg(z) -{ 0 }-> 0 :|: z = 0 encArg(z) -{ 0 }-> 0 :|: z >= 0 encArg(z) -{ 2*x_1^2 + 2*x_2^2 }-> 1 + s1 + s2 :|: s1 >= 0, s1 <= x_1, s2 >= 0, s2 <= x_2, x_1 >= 0, z = 1 + x_1 + x_2, x_2 >= 0 encode_cons(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_cons(z, z') -{ 2*z^2 + 2*z'^2 }-> 1 + s15 + s16 :|: s15 >= 0, s15 <= z, s16 >= 0, s16 <= z', z >= 0, z' >= 0 encode_empty -{ 0 }-> 0 :|: encode_f(z, z') -{ 2 + 2*s10 + s9 + 2*z^2 + 2*z'^2 }-> s11 :|: s9 >= 0, s9 <= z, s10 >= 0, s10 <= z', s11 >= 0, s11 <= s9 + s10, z >= 0, z' >= 0 encode_f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 encode_g(z, z') -{ 1 + s12 + 2*z^2 + 2*z'^2 }-> s14 :|: s12 >= 0, s12 <= z, s13 >= 0, s13 <= z', s14 >= 0, s14 <= s12 + s13, z >= 0, z' >= 0 encode_g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 f(z, z') -{ 2 + z }-> s :|: s >= 0, s <= z + 0, z >= 0, z' = 0 f(z, z') -{ 4 + 2*k + x + z }-> s'' :|: s'' >= 0, s'' <= 1 + x + z + k, z >= 0, x >= 0, z' = 1 + x + k, k >= 0 f(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 g(z, z') -{ 2 + k }-> s' :|: s' >= 0, s' <= k + (1 + x + z'), x >= 0, z' >= 0, k >= 0, z = 1 + x + k g(z, z') -{ 1 }-> z' :|: z' >= 0, z = 0 g(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 Function symbols to be analyzed: Previous analysis results are: g: runtime: O(n^1) [1 + z], size: O(n^1) [z + z'] encode_empty: runtime: O(1) [0], size: O(1) [0] f: runtime: O(n^1) [2 + z + 2*z'], size: O(n^1) [z + z'] encArg: runtime: O(n^2) [2*z^2], size: O(n^1) [z] encode_cons: runtime: O(n^2) [2*z^2 + 2*z'^2], size: O(n^1) [1 + z + z'] encode_f: runtime: O(n^2) [2 + z + 2*z^2 + 2*z' + 2*z'^2], size: O(n^1) [z + z'] encode_g: runtime: O(n^2) [1 + z + 2*z^2 + 2*z'^2], size: O(n^1) [z + z'] ---------------------------------------- (63) FinalProof (FINISHED) Computed overall runtime complexity ---------------------------------------- (64) BOUNDS(1, n^2) ---------------------------------------- (65) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (66) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) The (relative) TRS S consists of the following rules: encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Rewrite Strategy: FULL ---------------------------------------- (67) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (68) Obligation: TRS: Rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g hole_empty:cons:cons_f:cons_g1_0 :: empty:cons:cons_f:cons_g gen_empty:cons:cons_f:cons_g2_0 :: Nat -> empty:cons:cons_f:cons_g ---------------------------------------- (69) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: f, g, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (70) Obligation: TRS: Rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g hole_empty:cons:cons_f:cons_g1_0 :: empty:cons:cons_f:cons_g gen_empty:cons:cons_f:cons_g2_0 :: Nat -> empty:cons:cons_f:cons_g Generator Equations: gen_empty:cons:cons_f:cons_g2_0(0) <=> empty gen_empty:cons:cons_f:cons_g2_0(+(x, 1)) <=> cons(empty, gen_empty:cons:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (71) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: g(gen_empty:cons:cons_f:cons_g2_0(n4_0), gen_empty:cons:cons_f:cons_g2_0(b)) -> gen_empty:cons:cons_f:cons_g2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Induction Base: g(gen_empty:cons:cons_f:cons_g2_0(0), gen_empty:cons:cons_f:cons_g2_0(b)) ->_R^Omega(1) gen_empty:cons:cons_f:cons_g2_0(b) Induction Step: g(gen_empty:cons:cons_f:cons_g2_0(+(n4_0, 1)), gen_empty:cons:cons_f:cons_g2_0(b)) ->_R^Omega(1) g(gen_empty:cons:cons_f:cons_g2_0(n4_0), cons(empty, gen_empty:cons:cons_f:cons_g2_0(b))) ->_IH gen_empty:cons:cons_f:cons_g2_0(+(+(b, 1), c5_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (72) Complex Obligation (BEST) ---------------------------------------- (73) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g hole_empty:cons:cons_f:cons_g1_0 :: empty:cons:cons_f:cons_g gen_empty:cons:cons_f:cons_g2_0 :: Nat -> empty:cons:cons_f:cons_g Generator Equations: gen_empty:cons:cons_f:cons_g2_0(0) <=> empty gen_empty:cons:cons_f:cons_g2_0(+(x, 1)) <=> cons(empty, gen_empty:cons:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: g, f, encArg They will be analysed ascendingly in the following order: g < f f < encArg g < encArg ---------------------------------------- (74) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (75) BOUNDS(n^1, INF) ---------------------------------------- (76) Obligation: TRS: Rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g hole_empty:cons:cons_f:cons_g1_0 :: empty:cons:cons_f:cons_g gen_empty:cons:cons_f:cons_g2_0 :: Nat -> empty:cons:cons_f:cons_g Lemmas: g(gen_empty:cons:cons_f:cons_g2_0(n4_0), gen_empty:cons:cons_f:cons_g2_0(b)) -> gen_empty:cons:cons_f:cons_g2_0(+(n4_0, b)), rt in Omega(1 + n4_0) Generator Equations: gen_empty:cons:cons_f:cons_g2_0(0) <=> empty gen_empty:cons:cons_f:cons_g2_0(+(x, 1)) <=> cons(empty, gen_empty:cons:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: f, encArg They will be analysed ascendingly in the following order: f < encArg ---------------------------------------- (77) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: f(gen_empty:cons:cons_f:cons_g2_0(a), gen_empty:cons:cons_f:cons_g2_0(n577_0)) -> gen_empty:cons:cons_f:cons_g2_0(+(n577_0, a)), rt in Omega(1 + a + n577_0) Induction Base: f(gen_empty:cons:cons_f:cons_g2_0(a), gen_empty:cons:cons_f:cons_g2_0(0)) ->_R^Omega(1) g(gen_empty:cons:cons_f:cons_g2_0(a), empty) ->_L^Omega(1 + a) gen_empty:cons:cons_f:cons_g2_0(+(a, 0)) Induction Step: f(gen_empty:cons:cons_f:cons_g2_0(a), gen_empty:cons:cons_f:cons_g2_0(+(n577_0, 1))) ->_R^Omega(1) f(cons(empty, gen_empty:cons:cons_f:cons_g2_0(a)), gen_empty:cons:cons_f:cons_g2_0(n577_0)) ->_IH gen_empty:cons:cons_f:cons_g2_0(+(+(a, 1), c578_0)) We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (78) Obligation: TRS: Rules: f(a, empty) -> g(a, empty) f(a, cons(x, k)) -> f(cons(x, a), k) g(empty, d) -> d g(cons(x, k), d) -> g(k, cons(x, d)) encArg(empty) -> empty encArg(cons(x_1, x_2)) -> cons(encArg(x_1), encArg(x_2)) encArg(cons_f(x_1, x_2)) -> f(encArg(x_1), encArg(x_2)) encArg(cons_g(x_1, x_2)) -> g(encArg(x_1), encArg(x_2)) encode_f(x_1, x_2) -> f(encArg(x_1), encArg(x_2)) encode_empty -> empty encode_g(x_1, x_2) -> g(encArg(x_1), encArg(x_2)) encode_cons(x_1, x_2) -> cons(encArg(x_1), encArg(x_2)) Types: f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g empty :: empty:cons:cons_f:cons_g g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encArg :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g cons_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_f :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_empty :: empty:cons:cons_f:cons_g encode_g :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g encode_cons :: empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g -> empty:cons:cons_f:cons_g hole_empty:cons:cons_f:cons_g1_0 :: empty:cons:cons_f:cons_g gen_empty:cons:cons_f:cons_g2_0 :: Nat -> empty:cons:cons_f:cons_g Lemmas: g(gen_empty:cons:cons_f:cons_g2_0(n4_0), gen_empty:cons:cons_f:cons_g2_0(b)) -> gen_empty:cons:cons_f:cons_g2_0(+(n4_0, b)), rt in Omega(1 + n4_0) f(gen_empty:cons:cons_f:cons_g2_0(a), gen_empty:cons:cons_f:cons_g2_0(n577_0)) -> gen_empty:cons:cons_f:cons_g2_0(+(n577_0, a)), rt in Omega(1 + a + n577_0) Generator Equations: gen_empty:cons:cons_f:cons_g2_0(0) <=> empty gen_empty:cons:cons_f:cons_g2_0(+(x, 1)) <=> cons(empty, gen_empty:cons:cons_f:cons_g2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (79) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_empty:cons:cons_f:cons_g2_0(n1175_0)) -> gen_empty:cons:cons_f:cons_g2_0(n1175_0), rt in Omega(0) Induction Base: encArg(gen_empty:cons:cons_f:cons_g2_0(0)) ->_R^Omega(0) empty Induction Step: encArg(gen_empty:cons:cons_f:cons_g2_0(+(n1175_0, 1))) ->_R^Omega(0) cons(encArg(empty), encArg(gen_empty:cons:cons_f:cons_g2_0(n1175_0))) ->_R^Omega(0) cons(empty, encArg(gen_empty:cons:cons_f:cons_g2_0(n1175_0))) ->_IH cons(empty, gen_empty:cons:cons_f:cons_g2_0(c1176_0)) We have rt in Omega(1) and sz in O(n). Thus, we have irc_R in Omega(n^0). ---------------------------------------- (80) BOUNDS(1, INF)