/export/starexec/sandbox/solver/bin/starexec_run_rcdcRelativeAlsoLower /export/starexec/sandbox/benchmark/theBenchmark.xml /export/starexec/sandbox/output/output_files -------------------------------------------------------------------------------- WORST_CASE(Omega(n^1), ?) proof of /export/starexec/sandbox/benchmark/theBenchmark.xml # AProVE Commit ID: 794c25de1cacf0d048858bcd21c9a779e1221865 marcel 20200619 unpublished dirty The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). (0) DCpxTrs (1) DerivationalComplexityToRuntimeComplexityProof [BOTH BOUNDS(ID, ID), 0 ms] (2) CpxRelTRS (3) SInnermostTerminationProof [BOTH CONCRETE BOUNDS(ID, ID), 201 ms] (4) CpxRelTRS (5) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] (6) CpxRelTRS (7) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] (8) typed CpxTrs (9) OrderProof [LOWER BOUND(ID), 0 ms] (10) typed CpxTrs (11) RewriteLemmaProof [LOWER BOUND(ID), 291 ms] (12) proven lower bound (13) LowerBoundPropagationProof [FINISHED, 0 ms] (14) BOUNDS(n^1, INF) ---------------------------------------- (0) Obligation: The Derivational Complexity (full) of the given DCpxTrs could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y S is empty. Rewrite Strategy: FULL ---------------------------------------- (1) DerivationalComplexityToRuntimeComplexityProof (BOTH BOUNDS(ID, ID)) The following rules have been added to S to convert the given derivational complexity problem to a runtime complexity problem: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t ---------------------------------------- (2) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t Rewrite Strategy: FULL ---------------------------------------- (3) SInnermostTerminationProof (BOTH CONCRETE BOUNDS(ID, ID)) proved innermost termination of relative rules ---------------------------------------- (4) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1)) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1) -> 1 encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1 encode_t -> t Rewrite Strategy: FULL ---------------------------------------- (5) RenamingProof (BOTH BOUNDS(ID, ID)) Renamed function symbols to avoid clashes with predefined symbol. ---------------------------------------- (6) Obligation: The Runtime Complexity (full) of the given CpxRelTRS could be proven to be BOUNDS(n^1, INF). The TRS R consists of the following rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y The (relative) TRS S consists of the following rules: encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Rewrite Strategy: FULL ---------------------------------------- (7) TypeInferenceProof (BOTH BOUNDS(ID, ID)) Infered types. ---------------------------------------- (8) Obligation: TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda ---------------------------------------- (9) OrderProof (LOWER BOUND(ID)) Heuristically decided to analyse the following defined symbols: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (10) Obligation: TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda Generator Equations: gen_1':t:cons_a:cons_lambda2_0(0) <=> 1' gen_1':t:cons_a:cons_lambda2_0(+(x, 1)) <=> cons_a(1', gen_1':t:cons_a:cons_lambda2_0(x)) The following defined symbols remain to be analysed: a, encArg They will be analysed ascendingly in the following order: a < encArg ---------------------------------------- (11) RewriteLemmaProof (LOWER BOUND(ID)) Proved the following rewrite lemma: encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0)) -> gen_1':t:cons_a:cons_lambda2_0(0), rt in Omega(n50_0) Induction Base: encArg(gen_1':t:cons_a:cons_lambda2_0(0)) ->_R^Omega(0) 1' Induction Step: encArg(gen_1':t:cons_a:cons_lambda2_0(+(n50_0, 1))) ->_R^Omega(0) a(encArg(1'), encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0))) ->_R^Omega(0) a(1', encArg(gen_1':t:cons_a:cons_lambda2_0(n50_0))) ->_IH a(1', gen_1':t:cons_a:cons_lambda2_0(0)) ->_R^Omega(1) 1' We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). ---------------------------------------- (12) Obligation: Proved the lower bound n^1 for the following obligation: TRS: Rules: a(lambda(x), y) -> lambda(a(x, 1')) a(lambda(x), y) -> lambda(a(x, a(y, t))) a(a(x, y), z) -> a(x, a(y, z)) lambda(x) -> x a(x, y) -> x a(x, y) -> y encArg(1') -> 1' encArg(t) -> t encArg(cons_a(x_1, x_2)) -> a(encArg(x_1), encArg(x_2)) encArg(cons_lambda(x_1)) -> lambda(encArg(x_1)) encode_a(x_1, x_2) -> a(encArg(x_1), encArg(x_2)) encode_lambda(x_1) -> lambda(encArg(x_1)) encode_1 -> 1' encode_t -> t Types: a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda 1' :: 1':t:cons_a:cons_lambda t :: 1':t:cons_a:cons_lambda encArg :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda cons_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_a :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_lambda :: 1':t:cons_a:cons_lambda -> 1':t:cons_a:cons_lambda encode_1 :: 1':t:cons_a:cons_lambda encode_t :: 1':t:cons_a:cons_lambda hole_1':t:cons_a:cons_lambda1_0 :: 1':t:cons_a:cons_lambda gen_1':t:cons_a:cons_lambda2_0 :: Nat -> 1':t:cons_a:cons_lambda Generator Equations: gen_1':t:cons_a:cons_lambda2_0(0) <=> 1' gen_1':t:cons_a:cons_lambda2_0(+(x, 1)) <=> cons_a(1', gen_1':t:cons_a:cons_lambda2_0(x)) The following defined symbols remain to be analysed: encArg ---------------------------------------- (13) LowerBoundPropagationProof (FINISHED) Propagated lower bound. ---------------------------------------- (14) BOUNDS(n^1, INF)